zbMATH — the first resource for mathematics

Stabilization of solutions of certain one-dimensional degenerate diffusion equations. (English) Zbl 0619.35064
Die Autoren untersuchen Anfangsrandwertprobleme der Form \[ (*)\quad u_ t=(u^ m)_{xx}+f(u),\quad (x,t)\in (-L,L)\times {\mathbb{R}}^+;\quad u(\pm L,t)=0;\quad u(x,0)=u_ 0(x),\quad x\in [-L,L], \] wobei die Nichtlinearität f(u) gewisse Bedingungen erfüllt (als typisches Beispiel wird \(f(r)=ar^{\beta}-br\) mit \(a,b>0\) und \(m>\gamma >1\) erwähnt). Untersucht werden die stationären Lösungen der obigen Gleichung sowie - mittels der Galerkinmethode - Existenz- und Konvergenzfragen (für \(t\to \infty)\) beim zeitabhängigen Problem.
Reviewer: W.Wendt

35K65 Degenerate parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: EuDML
[1] ARONSON D. G., CRANDALL M. G., PELETIER L. A.: Stabilization of solutions of a degenerate nonlinear diffusion problem. Nonlinear Analysis 6, 1982, 1001-1022. · Zbl 0518.35050
[2] GURTIN M. E., MACCAMY R. C.: On the diffusion of biological population. Mathematical Biosciences 33, 1977, 35-49. · Zbl 0362.92007
[3] NAKAO M.: Existence, nonexistence and some asymptotic behaviour of global solutions of a nonlinear degenerate parabolic equation. Math. Rep. College General Edc, Kyushu Univ. 14, 1983, 1-21. · Zbl 0563.35038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.