A preconditioning technique for the efficient solution of problems with local grid refinement. (English) Zbl 0619.76113

We develop a new preconditioning method for elliptic problems which allows for dynamic local grid refinement. The majority of the computation in the implementation of our method involves solution procedures on mesh domains with regular geometry. Accordingly, the resulting algorithms can be effectively vectorized. It seems feasible to incorporate these ideas into existing large-scale simulators without a complete redesign of the simulator.


76S05 Flows in porous media; filtration; seepage
76M99 Basic methods in fluid mechanics
Full Text: DOI


[1] Babuška, I.; Rheinboldt, W.C., A posteriori error estimates for the finite element method, Internat. J. numer. meths. engrg., 12, 1597-1615, (1978) · Zbl 0396.65068
[2] Babuška, I.; Rheinboldt, W.C., Reliable error estimation and mesh adaptation, () · Zbl 0451.65078
[3] Bank, R.E.; Sherman, A.H., PLTMG User’s guide, ()
[4] Bank, R.E.; Weiser, A., Some a-posteriori error estimates for elliptic partial differential equations, Math. comp., 44, 283-301, (1985) · Zbl 0569.65079
[5] Berger, M.J., Data structures for adaptive mesh refinement, (), 237-251
[6] Bjørstad, P.E.; Widlund, O.B., Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. numer. anal., 23, 1097-1120, (1986) · Zbl 0615.65113
[7] Bjørstad, P.E.; Widlund, O.B., Solving elliptic problems on regions partitioned into substructures, (), 245-256
[8] Bramble, J.H.; Pasciak, J.E.; Schatz, A.H., An iterative method for elliptic problems on regions partitioned into substructures, Math. comp., 46, 361-369, (1986) · Zbl 0595.65111
[9] Bramble, J.H.; Pasciak, J.E.; Schatz, A.H., The construction of preconditioner for elliptic problems by substructing, I, Math. comp, 47, 103-134, (1986) · Zbl 0615.65112
[10] Charbenau, R.J.; Street, R.L., Modeling groundwater flow fields containing point singularities: A technique for singularity removal, Water resources res., 15, 583-599, (1979)
[11] Darlow, B.L.; Ewing, R.E.; Wheeler, M.F., Mixed finite elements methods for miscible displacement in porous media, Soc. pet. engrg. J., 4, 391-398, (1984)
[12] Demkowicz, L.; Oden, J.T.; Devloo, P., An h-type mesh refinement strategy based on a minimization of interpolation error, Comput. meths. appl. mech. engrg., 53, 67-89, (1985) · Zbl 0556.73081
[13] Diaz, J.C.; Ewing, R.E.; Jones, R.W.; McDonald, A.E.; Whler, L.M.; von Rosenberg, D.U., Self-adaptive local grid refinement for time dependent, two dimensional simulation, (), 279-290
[14] Ewing, R.E.; Koebbe, J.V.; Gonzalez, R.; Wheeler, M.F., Mixed finite element methods for accurate fluid velocities, (), 233-249
[15] Ewing, R.E., Adaptive mesh refinement in large scale fluid flow simulation, (), 299-314
[16] R.E. Ewing, Efficient adaptive procedures for fluid flow applications, Comput. Meths. Appl. Mech. Engrg. (to appear). · Zbl 0572.76096
[17] Flaherty, J.E.; Coyle, J.M.; Ludwig, R.; Davis, S.F., Adaptive finite element methods for parabolic partial differential equations, (), 144
[18] Golub, G.H.; Meyers, D., The use of preconditioning over irregular regions, ()
[19] J.T. Oden, T. Strouboulis and P. Devloo, Adaptive finite element methods for the analysis of inviscid compressible flow, 1. Fast refinement/unrefinement and moving mesh methods for unstructured meshes, Comput. Meths. Appl. Mech. Engrg. (to appear). · Zbl 0593.76080
[20] Patterson, W.M., 3rd, iterative methods for the solution of a linear operator equation in Hilbert space—a survey, ()
[21] Rheinboldt, W.C.; Mesztenyi, C.K., On a data structure for adaptive finite element mesh refinement, Trans. math. software, 6, 166-187, (1980) · Zbl 0437.65081
[22] Schatz, A.H.; Wahlbin, L.B., Maximum norm estimates in the finite element method on plain polygonal domains, part II, refinements, Math. comp., 33, 465-492, (1979) · Zbl 0417.65053
[23] von Rosenberg, D.U., Local mesh refinement for finite difference methods, () · Zbl 0615.76097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.