×

A bounded linear extension operator for \(L^{2,p}(\mathbb R^2)\). (English) Zbl 1315.46034

The author considers the problem of a smooth extension of real-valued functions. In a general form, this problem is formulated as follows. Let \(E\) be an arbitrary subset of \({\mathbb R}^n\). Let \(\mathbb X\) be a space of real-valued smooth functions on \({\mathbb R}^n\). Given a function \(f : E \to {\mathbb R}\), how can we tell whether there exists a smooth function \(F \in \mathbb X\) such that \(F = f\) on \(E\)? The function \(F\) is called a smooth extension of \(f\). If a smooth extension exists, can we take it to depend linearly on \(f\)? There are many definitions of “smooth” functions and for each such definition we have a variation of the above question.
The study of the extension problem was initiated by H. Whitney in two classical papers [“Analytic extensions of differentiable functions defined in closed sets”, Trans. Am. Math. Soc. 36, 63–89 (1934; Zbl 0008.24902)] and “[Differentiable functions defined in closed sets. I”, ibid. 36, 369–387 (1934; Zbl 0009.20803)]. Whitney considered extensions of differentiable functions from closed subsets and solved the problem for the space \(C^m ({\mathbb R})\). Further results for the space \(C^m ({\mathbb R^n})\) were obtained by Y. Brudnyi, P. Shvartsman, C. Fefferman and others. For more information on the history of the subject, see the monograph of A. Brudnyi and Y. Brudnyi [Methods of geometric analysis in extension and trace problems. Vol. 1. Basel: Birkhäuser (2012; Zbl 1253.46001)].
Let \({\mathbb X}=L^{m,p}({\mathbb R}^n)\) be the Sobolev space of real-valued functions with \(m\)th derivatives belonging to \(L^p\), \(n<p<\infty\), with the seminorm \(\|F\|_{\mathbb X}:=\left( \int_{{\mathbb R}^n}|\nabla^m F(x)|^p\right)^{1/p}\). Define the trace space \({\mathbb X}|_E= \{F|_E ; F\in {\mathbb X}\}\) with the trace seminorm \(\|f\|_{{\mathbb X}|_E} := \inf \{\|F\|_{\mathbb X}: F\in {\mathbb X}\), \(F|_E=f \} \) for \(f\in {\mathbb X}|_E\).
The results on the extension problem for \({\mathbb X}=L^{m,p}({\mathbb R}^n)\) are modest compared with those for \({\mathbb X}=C^m(\mathbb R^n)\). The solutions are known only for some special cases: for \({\mathbb X}=L^{m,p}({\mathbb R})\), \({\mathbb X}=L^{1,p}({\mathbb R}^n)\) and some others. In the paper under review, the author gives the solution for \({\mathbb X}=L^{2,p}({\mathbb R}^2)\), \(p>2\). The case of arbitrary \(E\) is reduced to the case of a finite subset \(E\). The main result is the following theorem.
Theorem 1. Let \(2 < p < \infty\). Suppose that \(E \subset {\mathbb R}^2\) has cardinality \(\#E=N<\infty\). Then there exists a bounded linear extension operator \(T: L^{2,p}({\mathbb R}^2)|_E\to L^{2,p}({\mathbb R}^2)\) with norm \(C\). Moreover, there exist linear functionals \(\lambda_1, \lambda_2,\dots, \lambda_K\), where \(K<CN^2\), such that \(M(f)=\left(\sum^K_{k=1}|\lambda_k(f)|^p\right)^{1/p}\) satisfies \(C^{-1}M(f)\leq \|f\|_{L^{2,p}({\mathbb R}^2)|_E} \leq CM(f)\) for all \(f:E\to {\mathbb R}\). Here, the constant \(C > 1\) depends only on \(p\).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
26B05 Continuity and differentiation questions

References:

[1] Y. A. Brudnyui and P. A. Shvartsman, ”A linear extension operator for a space of smooth functions defined on a closed subset in \({\mathbf R}^n\),” Dokl. Akad. Nauk SSSR, vol. 280, iss. 2, pp. 268-272, 1985. · Zbl 0597.46027
[2] Y. Brudnyi and P. Shvartsman, ”Generalizations of Whitney’s extension theorem,” Internat. Math. Res. Notices, iss. 3, p. 129, 1994. · Zbl 0845.57022 · doi:10.1155/S1073792894000140
[3] Y. Brudnyi and P. Shvartsman, ”The Whitney problem of existence of a linear extension operator,” J. Geom. Anal., vol. 7, iss. 4, pp. 515-574, 1997. · Zbl 0937.58007 · doi:10.1007/BF02921632
[4] Y. Brudnyi and P. Shvartsman, ”Whitney’s extension problem for multivariate \(C^{1,\omega}\)-functions,” Trans. Amer. Math. Soc., vol. 353, iss. 6, pp. 2487-2512, 2001. · Zbl 0973.46025 · doi:10.1090/S0002-9947-01-02756-8
[5] L. C. Evans, Partial Differential Equations, Providence, RI: Amer. Math. Soc., 1998, vol. 19. · Zbl 0902.35002
[6] C. Fefferman, ”A sharp form of Whitney’s extension theorem,” Ann. of Math., vol. 161, iss. 1, pp. 509-577, 2005. · Zbl 1102.58005 · doi:10.4007/annals.2005.161.509
[7] C. Fefferman, ”Interpolation and extrapolation of smooth functions by linear operators,” Rev. Mat. Iberoamericana, vol. 21, iss. 1, pp. 313-348, 2005. · Zbl 1084.58003 · doi:10.4171/RMI/424
[8] C. Fefferman, ”Whitney’s extension problem for \(C^m\),” Ann. of Math., vol. 164, iss. 1, pp. 313-359, 2006. · Zbl 1109.58016 · doi:10.4007/annals.2006.164.313
[9] C. Fefferman, ”\(C^m\) extension by linear operators,” Ann. of Math., vol. 166, iss. 3, pp. 779-835, 2007. · Zbl 1161.46013 · doi:10.4007/annals.2007.166.779
[10] C. Fefferman, ”Extension of \(C^{m,\omega}\)-smooth functions by linear operators,” Rev. Mat. Iberoam., vol. 25, iss. 1, pp. 1-48, 2009. · Zbl 1173.46014 · doi:10.4171/RMI/568
[11] C. Fefferman and B. Klartag, ”Fitting a \(C^m\)-smooth function to data. I,” Ann. of Math., vol. 169, iss. 1, pp. 315-346, 2009. · Zbl 1175.41001 · doi:10.4007/annals.2009.169.315
[12] C. Fefferman, A. Israel, and G. K. Luli, The structure of Sobolev extension operators, 2012. · Zbl 1321.46036 · doi:10.4171/RMI/787
[13] C. Fefferman, A. Israel, and G. K. Luli, Sobolev extension by linear operators. · Zbl 1290.46027 · doi:10.1090/S0894-0347-2013-00763-8
[14] G. K. Luli, Whitney Extension for \(W^{k,p}(E)\) in One Dimension. · Zbl 1325.00013
[15] G. K. Luli, ”\(C^{m,\omega}\) extension by bounded-depth linear operators,” Adv. Math., vol. 224, iss. 5, pp. 1927-2021, 2010. · Zbl 1195.47005 · doi:10.1016/j.aim.2010.01.027
[16] P. A. Shvartsman, The traces of functions of two variables satisfying to the Zygmund condition, 1982. · Zbl 0596.41007
[17] P. A. Shvartsman, ”Lipschitz selections of multivalued mappings and the traces of the Zygmund class functions to an arbitrary compact,” Dokl. Akad. Nauk SSSR, vol. 276, iss. 3, pp. 559-562, 1984. · Zbl 0598.46026
[18] P. A. Shvartsman, ”Traces of functions of Zygmund class,” Sibirsk. Mat. Zh., vol. 28, iss. 5, pp. 203-215, 1987. · Zbl 0648.46030 · doi:10.1007/BF00969335
[19] P. Shvartsman, ”Sobolev \(W^1_p\)-spaces on closed subsets of \({\mathbf R}^n\),” Adv. Math., vol. 220, iss. 6, pp. 1842-1922, 2009. · Zbl 1176.46040 · doi:10.1016/j.aim.2008.09.020
[20] P. Shvartsman, Lipschitz spaces generated by the Sobolev-Poincaré inequality and extensions of Sobolev functions, 2011.
[21] P. Shvartsman, Sobolev \(L^2_p\)-functions on closed subsets of \(\mathbbR^2\), 2012.
[22] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, N.J.: Princeton Univ. Press, 1970, vol. 30. · Zbl 0207.13501
[23] E. M. Stein, ”The characterization of functions arising as potentials. II,” Bull. Amer. Math. Soc., vol. 68, pp. 577-582, 1962. · Zbl 0127.32002 · doi:10.1090/S0002-9904-1961-10517-X
[24] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second ed., Heidelberg: Johann Ambrosius Barth, 1995. · Zbl 0830.46028
[25] H. Triebel, Theory of Function Spaces. III, Basel: Birkhäuser, 2006. · Zbl 1104.46001
[26] H. Whitney, ”Differentiable functions defined in closed sets. I,” Trans. Amer. Math. Soc., vol. 36, iss. 2, pp. 369-387, 1934. · Zbl 0009.20803 · doi:10.2307/1989844
[27] H. Whitney, ”Analytic extensions of differentiable functions defined in closed sets,” Trans. Amer. Math. Soc., vol. 36, iss. 1, pp. 63-89, 1934. · Zbl 0008.24902 · doi:10.2307/1989708
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.