×

Differential subordination properties of certain analytic functions. (English) Zbl 1355.30014


MSC:

30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ali R. M., Taiwanese J. Math. 16 pp 1017– (2012)
[2] DOI: 10.1155/2007/62925 · Zbl 1139.30302
[3] DOI: 10.1016/j.aml.2010.08.004 · Zbl 1202.30014
[4] DOI: 10.1155/S0161171201004781 · Zbl 0973.30013
[5] Janowski W., Ann. Polon. Math. 28 pp 297– (1973)
[6] Miller S. S., Differential Subordination, Theory and Application (2000)
[7] DOI: 10.1090/S0002-9939-1989-0975653-5
[8] DOI: 10.1006/jmaa.1997.5468 · Zbl 0880.30012
[9] Nunokawa M., Bull. Inst. Math. Acad. Sinica 31 pp 195– (2003)
[10] Obradović M., Rend. Math. Appl. 8 pp 283– (1988)
[11] Obradović M., Zeszyty Nauk. Politech. Rzeszowskiej Mat. 24 pp 59– (2000)
[12] Ponnusamy S., Soochow J. Math. 21 pp 193– (1995)
[13] Ravichandran V., Int. Math. J. 4 pp 119– (2003)
[14] Ravichandran V., Aust. J. Math. Anal. Appl. 2 pp 12– (2005)
[15] DOI: 10.1155/S0161171299220753 · Zbl 0921.30009
[16] DOI: 10.1016/j.amc.2007.01.034 · Zbl 1120.30015
[17] Sokół J., J. Math. Appl. 30 pp 46– (2008)
[18] DOI: 10.1016/j.amc.2009.04.031 · Zbl 1170.30005
[19] DOI: 10.5666/KMJ.2009.49.2.349 · Zbl 1176.30068
[20] Sokół J., Folia Scient. Univ. Tech. Resov. 19 pp 101– (1996)
[21] DOI: 10.1002/mana.200310015 · Zbl 1017.30009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.