×

zbMATH — the first resource for mathematics

Efficient reconfiguration of lattice-based modular robots. (English) Zbl 1273.70002
Summary: Modular robots consist of many identical units (or atoms) that can attach together and perform local motions. By combining such motions, one can achieve a reconfiguration of the global shape of a robot. The term modular comes from the idea of grouping together a fixed number of atoms into a metamodule, which behaves as a larger individual component. Recently, a fair amount of research has focused on algorithms for universal reconfiguration using Crystalline and Telecube metamodules, which use expanding/contracting cubical atoms.
From an algorithmic perspective, this work has achieved some of the best asymptotic reconfiguration times under a variety of different physical models. In this paper we show that these results extend to other types of modular robots, thus establishing improved upper bounds on their reconfiguration times. We describe a generic class of modular robots, and we prove that any robot meeting the generic class requirements can simulate the operation of a Crystalline atom by forming a six-arm structure. Previous reconfiguration bounds thus transfer automatically by substituting the six-arm structures for the Crystalline atoms. We also discuss four prototyped robots that satisfy the generic class requirements: M-TRAN, SuperBot, Molecube, and RoomBot.

MSC:
70B15 Kinematics of mechanisms and robots
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] G. Aloupis, S. Collette, M. Damian, E.D. Demaine, D. El-Khechen, R. Flatland, S. Langerman, J. OʼRourke, V. Pinciu, S. Ramaswami, V. Sacristán, S. Wuhrer, Realistic reconfiguration of Crystalline and Telecube robots, in: Proceedings of the 8th International Workshop on Algorithmic Foundations of Robotics, 2008, pp. 433-447. · Zbl 1215.68233
[2] Aloupis, G.; Collette, S.; Damian, M.; Demaine, E. D.; Flatland, R.; Langerman, S.; OʼRourke, J.; Ramaswami, S.; Sacristán, V.; Wuhrer, S., Linear reconfiguration of cube-style modular robots, Computational Geometry: Theory and Applications, 42, 6,7, 652-663, (2009) · Zbl 1200.52015
[3] Aloupis, G.; Collette, S.; Demaine, E. D.; Langerman, S.; Sacristán, V.; Wuhrer, S., Reconfiguration of cube-style modular robots using \(O(\log n)\) parallel moves, (Proceedings of the 19th International Symposium on Algorithms and Computation, LNCS, vol. 5369, (2008)) · Zbl 1183.68626
[4] Butler, Z.; Fitch, R.; Rus, D., Distributed control for unit-compressible robots: goal-recognition, locomotion and splitting, IEEE/ASME Transactions on Mechatronics, 7, 4, 418-430, (2002)
[5] Castano, A.; Behar, A.; Will, P., The CONRO modules for reconfigurable robots, IEEE/ASME Transactions on Mechatronics, 7, 4, 403-409, (2002)
[6] H. Chiu, M. Rubenstein, W. Shen, Multifunctional Superbot with rolling track configuration, in: Workshop on Self-Reconfigurable Robots & Systems and Applications, November 2007, pp. 50-53.
[7] J. Davey, N. Kwok, M. Yim, Emulating self-reconfigurable robots - design of the SMORES system, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2012, pp. 4464-4469.
[8] D.J. Dewey, M.P. Ashley-Rollman, M.D. Rosa, S.C. Goldstein, T.C. Mowry, Generalizing metamodules to simplify planning in modular robotic systems, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2008, pp. 1338-1345.
[9] M.W. Jørgensen, E.H. Østergaard, H.H. Lund, Modular ATRON: Modules for a self-reconfigurable robot, in: Proceedings of the International Conference on Intelligent Robots and Systems, 2004, pp. 2068-2073.
[10] K. Kotay, D. Rus, Algorithms for self-reconfiguring molecule motion planning, in: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, pp. 2184-2193.
[11] Kurokawa, H.; Tomita, K.; Kamimura, A.; Kokaji, S.; Hasuo, T.; Murata, S., Self-reconfigurable modular robot M-TRAN: distributed control and communication, (Proceedings of the 1st International Conference on Robot Communication and Coordination, (2007), IEEE Press), 1-7
[12] Kurokawa, H.; Yoshida, E.; Tomita, K.; Kamimura, A.; Murata, S.; Kokaji, S., Self-reconfigurable M-TRAN structures and Walker generation, Robotics and Autonomous Systems, 54, 142-149, (2006)
[13] M. Kutzer, M. Moses, C. Brown, D. Scheidt, G. Chirikjian, M. Armand, Design of a new independently-mobile reconfigurable modular robot, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2010, pp. 2758-2764.
[14] Murata, S.; Kurokawa, H., Self-reconfigurable robots: shape-changing cellular robots can exceed conventional robot flexibility, IEEE Robotics & Automation Magazine, 14, 1, 43-52, (2007)
[15] A.T. Nguyen, L. Guibas, M. Yim, Controlled module density helps reconfiguration planning, in: Proceedings of the 4th International Workshop on Algorithmic Foundations of Robotics, 2000, pp. 15-27. · Zbl 0986.68148
[16] K.C. Prevas, C. Ünsal, M. Önder Efe, P.K. Khosla, A hierarchical motion planning strategy for a uniform self-reconfigurable modular robotic system, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 787-792.
[17] J.H. Reif, S. Slee, Optimal kinodynamic motion planning for self-reconfigurable robots between arbitrary 2D configurations, in: Robotics: Science and Systems Conference, 2007. · Zbl 1344.70016
[18] Rus, D.; Vona, M., Crystalline robots: self-reconfiguration with compressible unit modules, Autonomous Robots, 10, 1, 107-124, (2001) · Zbl 1030.68833
[19] Shen, W.; Krivokon, M.; Chiu, H.; Everist, J.; Rubenstein, M.; Venkatesh, J., Multimode locomotion via superbot reconfigurable robots, Autonomous Robots, 20, 2, 165-177, (2006)
[20] A. Sproewitz, A. Billard, P. Dillenbourg, A. Ijspeert, Roombots - mechanical design of self-reconfiguring modular robots for adaptive furniture, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2009, pp. 4259-4264.
[21] S. Vassilvitskii, J. Kubica, E. Rieffel J. S, M. Yim, On the general reconfiguration problem for expanding cube style modular robots, in: Proceedings of the IEEE International Conference on Robotics and Automation, 2002, pp. 801-808.
[22] Yim, M.; Roufas, K.; Duff, D.; Zhang, Y.; Eldershaw, C.; Homans, S., Modular reconfigurable robots in space applications, Autonomous Robots, 14, 2-3, 225-237, (2003) · Zbl 1009.68532
[23] Yim, M.; Shen, W.; Salemi, B.; Rus, D.; Moll, M.; Lipson, H.; Klavins, E.; Chirikjian, G. S., Modular self-reconfigurable robots systems: challenges and opportunities for the future, IEEE Robotics & Automation Magazine, 14, 1, 43-52, (2007)
[24] V. Zykov, A. Chan, H. Lipson, Molecubes: An open-source modular robotics kit, in: IROS-2007 Self-Reconfigurable Robotics Workshop, 2007.
[25] Zykov, V.; Mytilinaios, E.; Adams, B.; Lipson, H., Self-reproducing machines, Nature, 435, 7038, 163-164, (2005)
[26] V. Zykov, P. Williams, N. Lassabe, H. Lipson, Molecubes extended: Diversifying capabilities of open-source modular robotics, in: IROS-2008 Self-Reconfigurable Robotics Workshop, 2008.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.