zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalizations of Hölder’s and some related integral inequalities on fractal space. (English) Zbl 1275.26014
Summary: Based on the local fractional calculus, we establish some new generalizations of Hölder’s inequality. Using it, some related results on the generalized integral inequality in fractal space are investigated in detail.

MSC:
26A33Fractional derivatives and integrals (real functions)
WorldCat.org
Full Text: DOI
References:
[1] E. Hewitt and K. Stromberg, Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable, Second Printing Corrected, Springer, New York, NY, USA, 1969. · Zbl 0225.26001
[2] J. Kuang, Applied Inequalities, Shandong Science Press, Jinan, China, 2003.
[3] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, UK, 2nd edition, 1953.
[4] X. Yang, “A generalization of Hölder inequality,” Journal of Mathematical Analysis and Applications, vol. 247, no. 1, pp. 328-330, 2000. · Zbl 0971.26011 · doi:10.1155/S0161171200003537 · eudml:48930
[5] X. Yang, “Refinement of Hölder inequality and application to Ostrowski inequality,” Applied Mathematics and Computation, vol. 138, no. 2-3, pp. 455-461, 2003. · Zbl 1023.26015 · doi:10.1016/S0096-3003(02)00159-5
[6] X. Yang, “A note on Hölder inequality,” Applied Mathematics and Computation, vol. 134, no. 2-3, pp. 319-323, 2003. · Zbl 1028.26019 · doi:10.1016/S0096-3003(01)00286-7
[7] X. Yang, “Hölder’s inequality,” Applied Mathematics Letters, vol. 16, no. 6, pp. 897-903, 2003. · Zbl 1046.26013 · doi:10.1016/S0893-9659(03)90014-0
[8] S. Wu and L. Debnath, “Generalizations of Aczél’s inequality and Popoviciu’s inequality,” Indian Journal of Pure and Applied Mathematics, vol. 36, no. 2, pp. 49-63, 2005. · Zbl 1083.26019
[9] S. H. Wu, “Generalization of a sharp Hölder’s inequality and its application,” Journal of Mathematical Analysis and Applications, vol. 332, no. 1, pp. 741-750, 2007. · Zbl 1120.26024 · doi:10.1016/j.jmaa.2006.10.019
[10] S. Wu, “A new sharpened and generalized version of Hölder’s inequality and its applications,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 708-714, 2008. · Zbl 1142.26018 · doi:10.1016/j.amc.2007.08.006
[11] E. G. Kwon and E. K. Bae, “On a continuous form of Hölder inequality,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 585-593, 2008. · Zbl 1138.26314 · doi:10.1016/j.jmaa.2008.01.057
[12] X. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic publisher Limited, Hong Kong, 2011.
[13] X. J. Yang, “Local fractional integral transforms,” Progress in Nonlinear Science, vol. 4, pp. 1-225, 2011.
[14] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2013.
[15] W.-H. Su, D. Baleanu, X.-J. Yang, and H. Jafari, “Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method,” Fixed Point Theory and Applications, vol. 2013, no. 1, pp. 89-102, 2013. · Zbl 1291.74083 · doi:10.1186/1687-1812-2013-89
[16] M.-S. Hu, D. Baleanu, and X.-J. Yang, “One-phase problems for discontinuous heat transfer in fractal media,” Mathematical Problems in Engineering, vol. 2013, Article ID 358473, 3 pages, 2013. · Zbl 1296.80006 · doi:10.1155/2013/358473
[17] K. M. Kolwankar and A. D. Gangal, “Hölder exponents of irregular signals and local fractional derivatives,” Pramana, vol. 48, no. 1, pp. 49-68, 1997.
[18] K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214-217, 1998. · Zbl 0945.82005 · doi:10.1103/PhysRevLett.80.214
[19] G. Jumarie, “The Minkowski’s space-time is consistent with differential geometry of fractional order,” Physics Letters A, vol. 363, no. 1-2, pp. 5-11, 2007. · Zbl 1197.83011 · doi:10.1016/j.physleta.2006.10.085
[20] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367-1376, 2006. · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[21] A. Parvate and A. D. Gangal, “Calculus on fractal subsets of real line. I. Formulation,” Fractals, vol. 17, no. 1, pp. 53-81, 2009. · Zbl 1173.28005 · doi:10.1142/S0218348X09004181
[22] A. Parvate and A. D. Gangal, “Fractal differential equations and fractal-time dynamical systems,” Pramana, vol. 64, no. 3, pp. 389-409, 2005.
[23] W. Chen, “Time-space fabric underlying anomalous diffusion,” Chaos, Solitons and Fractals, vol. 28, no. 4, pp. 923-929, 2006. · Zbl 1098.60078 · doi:10.1016/j.chaos.2005.08.199
[24] W. Chen, X. D. Zhang, and D. Koro\vsak, “Investigation on fractional and fractal derivative relaxation-oscillation models,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 1, pp. 3-9, 2010.
[25] W. Chen, H. Sun, X. Zhang, and D. Koro\vsak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1754-1758, 2010. · Zbl 1189.35355 · doi:10.1016/j.camwa.2009.08.020
[26] F. B. Adda and J. Cresson, “About non-differentiable functions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 2, pp. 721-737, 2001. · Zbl 0995.26006 · doi:10.1006/jmaa.2001.7656
[27] J. H. He, “A new fractal derivation,” Thermal Science, vol. 15, no. 1, pp. 145-147, 2011.
[28] J.-H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. · Zbl 1257.35158 · doi:10.1155/2012/916793
[29] J. Fan and J. He, “Fractal derivative model for air permeability in hierarchic porous media,” Abstract and Applied Analysis, vol. 2012, Article ID 354701, 7 pages, 2012. · Zbl 1255.76131 · doi:10.1155/2012/354701
[30] Y. J. Yang, D. Baleanu, and X. J. Yang, “A local fractional variational iteration method for Laplace equation within local fractional operators,” Abstract and Applied Analysis, vol. 2013, Article ID 202650, 6 pages, 2013. · Zbl 1273.65158 · doi:10.1155/2013/202650
[31] F. Gao, X. Yang, and Z. Kang, “Local fractional newton’s method derived from modified local fractional calculus,” in Proceedings of the 2nd International Joint Conference on Computational Sciences and Optimization (CSO ’09), pp. 228-232, IEEE Computer Society, April 2009. · doi:10.1109/CSO.2009.330
[32] X. Yang and F. Gao, “The fundamentals of local fractional derivative of the one-variable nondifferentiable functions,” Science & Technology, vol. 31, no. 5, pp. 920-921, 2009.
[33] X. Yang and F. Gao, “Fundamentals of Local fractional iteration of the continuously non-differentiable functions derived from local fractional calculus,” in Proceedings of the 2011 International Conference on Computer Science and Information Engineering (CSIE ’11), pp. 398-404, Springer, 2011.
[34] X. Yang, L. Li, and R. Yang, “Problems of local fractional definite integral of the one-variable nondifferentiable function,” Science & Technology, vol. 31, no. 4, pp. 722-724, 2009.
[35] X. Yang, L. Li, and R. Yang, “Problems of local fractional definite integral of the one-variable nondifferentiable function,” Science & Technology, vol. 31, no. 4, pp. 722-724, 2009.
[36] W.-H. Su, X.-J. Yang, H. Jafari, and D. Baleanu, “Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator,” Advances in Difference Equations, vol. 2013, no. 1, pp. 97-107, 2013. · doi:10.1186/1687-1847-2013-97
[37] G. S. Chen, “The local fractional Stieltjes Transform in fractal space,” Advances in Intelligent Transportation Systems, vol. 1, no. 1, pp. 29-31, 2012.
[38] G. S. Chen, “Local fractional Improper integral in fractal space,” Advances in Information Technology and Management, vol. 1, no. 1, pp. 4-8, 2012.
[39] G. S. Chen, “Mean value theorems for local fractional integrals on fractal space,” Advances in Mechanical Engineering and Its Applications, vol. 1, no. 1, pp. 5-8, 2012.