zbMATH — the first resource for mathematics

Degenerate linear-quadratic problem of discrete plant under uncertainty. (English. Russian original) Zbl 1269.49065
Autom. Remote Control 72, No. 11, 2351-2363 (2011); translation from Avtom. Telemekh. 2011, No. 11, 143-156 (2011).
Summary: Consideration is given to the linear-quadratic problem for the stationary discrete plants with a prescribed cost of control under incomplete information about the spectral composition of perturbations. An efficiently realizable algorithm to design a controller guaranteeing the given cost of control for the class of perturbations with localization of spectra in the a-priori defined frequency ranges is proposed.

49N10 Linear-quadratic optimal control problems
49N30 Problems with incomplete information (optimization)
49M30 Other numerical methods in calculus of variations (MSC2010)
Full Text: DOI
[1] Letov, A.M., Analytical Controller Design. I–V, Autom. Remote Control, 1960, vol. 21, no. 4, pp. 303–306; no. 5, pp. 389–393; no. 6, pp. 458–461; 1961, vol. 22, no. 4, pp. 363–372; 1962, vol. 23, no. 11, pp. 1319–1327. · Zbl 0182.48203
[2] Kalman, R., Contributions to the Theory of Optimal Control, Boletin de la Sociedad Mat. Mexican. Secunda ser., 1960, no. 1, pp. 102–119. · Zbl 0112.06303
[3] Emel’yanov, S.V. and Korovin, S.K., Novye tipy obratnoi svyazi. Upravlenie pri neopredelennosti (New Types of Feedback. Control under Uncertainty), Moscow: Nauka, 1997.
[4] Tsypkin, Ya.Z., Robust Optimal Discrete Control Systems, Autom. Remote Control, 1999, vol. 60, no. 3, part 1, pp. 315–324. · Zbl 1273.93108
[5] Rozanov, Yu.A., Statsionarnye sluchainye protsessy (Stationary Random Processes), Moscow: Nauka, 1990. · Zbl 0721.60040
[6] Bunich, A.L., Degenerate Problems of Control System Design for Discrete Linear Plants, Probl. Upravlen., 2009, no. 5, pp. 2–8.
[7] Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Plants), Moscow: Nauka, 1981. · Zbl 0522.93002
[8] Bellman, R. and Kalaba, R., Dynamic Programming and Adaptive Control Processes: Mathematical Foundations, IRE Trans. Automat. Control, 1960, vol. AC-5, pp. 5–10. · doi:10.1109/TAC.1960.6429288
[9] Bellman, R. and Kalaba, R., Dynamic Programming and Modern Control Theory, New York: Academic, 1965. · Zbl 0139.04502
[10] Raibman, N.S. and Chadeev, V.M., Adaptivnye modeli v sistemakh upravleniya (Adaptive Models in the Control Systems), Moscow: Sovetskoe Radio, 1966.
[11] Fel’dbaum, A.A., Osnovy teorii optimal’nykh avtomaticheskikh sistem (Fundamentals of the Theory of Optimal Automatic Systems), Moscow: Nauka, 1966.
[12] Barabanov, A.E. and Pervozvanskii, A.A., Optimization by he Frequency-uniform Criteria (H-theory), Autom. Remote Control, 1992, vol. 53, no. 9, part 1, pp. 1301–1327.
[13] Vladimirov, I.G., Kurdyukov, A.P., and Semenov, A.V., Stochastic Problem of H-optimization, Dokl. Ross. Akad. Nauk, 1995, vol. 343, no. 5, pp. 607–609. · Zbl 0875.93105
[14] Bunich, A.L., Degenerate Problems of Designing the Control System of a Linear Discrete Plant, Autom. Remote Control, 2005, vol. 66, no. 11, pp. 1733–1742. · Zbl 1126.93342 · doi:10.1007/s10513-005-0208-9
[15] Fomin, V.N., Metody upravleniya lineinymi diskretnymi ob”ektami (Methods of Control of Discrete Linear Plants), Leningrad: Leningr. Gos. Univ., 1985. · Zbl 0941.93508
[16] Kazarinov, Yu.F., Nonlinear Optimal Controllers in Stochastic Systems with a Linear Plant and Quadratic Functional, Autom. Remote Control, 1986, vol. 47, no. 1, part 1, pp. 50–57. · Zbl 0603.93070
[17] Piunovskii, A.B., Upravlenie sluchainymi posledovatel’nostyami v zadachakh s ogranicheniyami (Control of Random Sequences in the Problems with Constraints), Moscow: RFFI, 1996.
[18] Shteinberg, Sh.E., Serezhin L.P., et al., Problems of Design and Operation of Effective Control Systems, Promyshl. ASU i Kontrollery, 2004, no. 7, pp. 1–7.
[19] Qin, S.J. and Badgwell, T.A., A Survey of Industrial Control Technology, Contr. Eng. Practice, 2003, vol. 11, no. 7, pp. 733–764. · doi:10.1016/S0967-0661(02)00186-7
[20] Krasovskii, A.A., Historical Overview and State-of-the-Art of the Fundamental Applied Science of Control in Terms of Self-organizing Controllers, in Int. Conf. Control Probl., Plenary Papers, Moscow: Inst. Probl. Upravlen., 1999, pp. 4–23.
[21] Wiener, N., Cybernetics or Control and Communication in the Animals and the Machines, New York: MIT Press, 1961. Translated under the title Kibernetika ili upravlenie i svyaz’ v zhivotnom i mashine, Moscow: Sovetskoe Radio, 1968.
[22] Lundquist, L. and Yakubovich, V.A., Universal Controllers for Optimal Signal Tracking in Discrete Linear Systems, Dokl. Ross. Akad. Nauk, 1998, vol. 361, no. 2, pp. 177–180. · Zbl 0958.93058
[23] Olevskii, A.M., Representation of Functions by Exponents with Positive Frequencies, Usp. Mat. Nauk, 2004, vol. 59, no. 1 (355), pp. 169–178. · doi:10.4213/rm707
[24] Bogatyrev, A.B., Ekstremal’nye mnogochleny i rimanovy poverkhnosti (Extremal Polynomials and Riemann Surfaces), Moscow: MTSNMO, 2005. · Zbl 1243.65001
[25] Kravtsov, Yu.A., Randomness, Determinacy, Predictability, Usp. Fiz. Nauk, 1989, vol. 158, no. 1, pp. 93–122. · doi:10.3367/UFNr.0158.198905c.0093
[26] Pinsker, M.S. and Prelov, V.V., On Faultless Filtration of some Stationary Processes, Usp. Mat. Nauk, 1997, vol. 52, no. 2 (314), pp. 109–118. · doi:10.4213/rm821
[27] Oppenheim, A.V. and Schafer, R.W., Digital Signal Processing, Englewood Cliffs: Prentice Hall, 1989. Translated under the title Tsifrovaya obrabotka signalov, Moscow: Tekhnosfera, 2006. · Zbl 0369.94002
[28] Suetin, P.K., Ryady po mnogochlenam Fabera (Series in Faber Polynomials), Moscow: Nauka, 1984. · Zbl 0936.30026
[29] Rosenblatt, M. and Lii, K.S., Estimation and Deconvolution When the Transfer Function Has Zeros, J. Theor. Prob., 1988, vol. 1, no. 1, pp. 93–113. · Zbl 0668.62071 · doi:10.1007/BF01076289
[30] Babayan, N.M., On Asymptotic Behavior of the Forecast Error in the Singular Case, Teor. Veroyatn. Primen., 1984, vol. XXIX, no. 1, pp. 147–150. · Zbl 0531.60046
[31] Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1970, vol. 1, 3rd ed., 1971, vol. 2, 2nd ed. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1984, tom 2. · Zbl 0039.13201
[32] Hörmander, K., An Introduction to Complex Analysis in Several Variables, Princeton: Van Nostrand, 1966. Translated under the title Vvedenie v teoriyu funktsii neskol’kikh kompleksnykh peremennykh, Moscow: Mir, 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.