Compressive strengths and dynamic response of corrugated metal sandwich plates with unfilled and foam-filled sinusoidal plate cores. (English) Zbl 1401.74194

Summary: The compressive strengths and dynamic response of corrugated sandwich plates with unfilled and foam-filled sinusoidal plate cores are investigated. The “effective” compressive strengths of the unfilled and foam-filled sinusoidal plate cores are derived and numerically analyzed. Finite element method is employed to analyze the dynamic response of fully clamped metal sandwich plates with unfilled and foam-filled sinusoidal plate cores subjected to impulsive loading. Moreover, a simplified plastic-string model is developed to analytically predict the large deflection and time responses of the clamped sandwich plates under impulsive loading. One can see a good agreement between the analytical and numerical predictions. It can be seen that the present analytical procedure is efficient and simple to evaluate the dynamic response of corrugated sandwich plates.


74K20 Plates
74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics


Full Text: DOI


[1] Noor A.K., Burton W.S., Bert C.W.: Computational models for sandwich panels and shells. Appl. Mech. Rev. 49(3), 155–199 (1996)
[2] Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997) · Zbl 0723.73004
[3] Ashby M.F., Evans A.G., Fleck N.A., Gibson L.J., Hutchinson J.W., Wadley H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Oxford (2000)
[4] Deshpande V.S., Fleck N.A.: Collapse of truss core sandwich beams in 3-point bending. Int. J. Solids Struct. 38(36-37), 6275–6305 (2001) · Zbl 0981.74524
[5] Wadley H.N.G., Fleck N.A., Evans A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63(16), 2331–2343 (2003)
[6] Queheillalt D.T., Wadley H.N.G.: Pyramidal lattice truss structures with hollow trusses. Mater. Sci. Eng. A 397(1–2), 132–137 (2005)
[7] Deshpande V.S., Fleck N.A.: Energy absorption of an egg-box material. J. Mech. Phys. Solids 51(1), 187–208 (2003) · Zbl 1015.74522
[8] Sypeck D.J., Wadley H.N.G.: Multifunctional microtruss laminates: textil synthesis and properties. J. Mater. Res. 16(3), 890–897 (2001)
[9] Cui X.D., Zhang Y.H., Zhao H., Lu T.J., Fang D.N.: Stress concentration in two-dimensional lattices with imperfections. Acta Mech. 216(1), 105–122 (2011) · Zbl 1398.74128
[10] Fleck N.A., Deshpande V.S.: The resistance of clamped sandwich beams to shock loading. ASME J. Appl. Mech. 71(3), 386–401 (2004) · Zbl 1111.74404
[11] Qiu X., Deshpande V.S., Fleck N.A.: Impulsive loading of clamped monolithic and sandwich beams over a central patch. J. Mech. Phys. Solids 53(5), 1015–1046 (2005) · Zbl 1120.74586
[12] Tilbrook M.T., Deshpande V.S., Fleck N.A.: The impulsive response of sandwich beams: analytical and numerical investigation of regimes of behaviour. J. Mech. Phys. Solids 54(11), 2242–2280 (2006) · Zbl 1120.74588
[13] Qin Q.H., Wang T.J.: An analytical solution for the large deflections of a slender sandwich beam with a metallic foam core under transverse loading by a flat punch. Compos. Struct. 88(4), 509–518 (2009)
[14] Qin Q.H., Zhang J.X., Wang Z.J., Wang T.J.: Large deflection of geometrically asymmetric metal foam core sandwich beam transversely loaded by a flat punch. Int. J. Aerosp. Lightweight Struct. 1, 23–46 (2011)
[15] Qin Q.H., Wang T.J.: A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading. Eur. J. Mech. A/Solids 28(5), 1014–1025 (2009) · Zbl 1176.74105
[16] Qin Q.H., Wang T.J., Zhao S.Z.: Large deflections of metallic sandwich and monolithic beams under locally impulsive loading. Int. J. Mech. Sci. 51(11-12), 752–773 (2009)
[17] Qin, Q.H., Wang, T.J.: Impulsive loading of a fully clamped circular metallic foam core sandwich plate. In: Proceedings of the 7th International Conference on Shock and Impact Loads on Structures, Beijing, pp. 481–488 (2007)
[18] Rathbun H.J., Radford D.D., Xue Z., He M.Y., Yang J., Deshpande V.S., Fleck N.A., Hutchinson J.W., Zok F.W., Evans A.G.: Performance of metallic honeycomb-core sandwich beams under shock loading. Int. J. Solids Struct. 43(6), 1746–1763 (2006) · Zbl 1120.74767
[19] Radford D.D., Fleck N.A., Deshpande V.S.: The response of clamped sandwich beams subjected to shock loading. Int. J. Impact Eng. 32(6), 968–987 (2006) · Zbl 1170.74302
[20] Tagarielli V.L., Deshpande V.S., Fleck N.A.: The dynamic response of composite sandwich beams to transverse impact. Int. J. Solids Struct. 44(7–8), 2442–2457 (2007)
[21] Dharmasena K.P., Wadley H.N.G., Xue Z., Hutchinson J.W.: Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int. J. Impact Eng. 35(9), 1063–1074 (2008)
[22] Zhu F., Zhao L., Lu G., Wang Z.: Deformation and failure of blast-loaded metallic sandwich panels-Experimental investigations. Int. J. Impact Eng. 35(8), 937–951 (2008)
[23] Qiu X., Deshpande V.S., Fleck N.A.: Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading. Eur. J. Mech. A/Solids 22(6), 801–814 (2003) · Zbl 1032.74678
[24] Xue Z., Hutchinson J.W.: A comparative study of impulse-resistant metal sandwich plates. Int. J. Impact Eng. 30(10), 1283–1305 (2004)
[25] Vaziri A., Xue Z., Hutchinson J.W.: Metal sandwich plates with polymer foam-filled cores. J. Mech. Mater. Struct. 1(1), 95–125 (2006)
[26] Liang Y., Spuskanyuk A.V., Flores S.E., Hayhurst D.R., Hutchinson J.W., McMeeking R.M., Evans A.G.: The response of metallic sandwich panels to water blast. ASME J. Appl. Mech. 74(1), 81–99 (2007) · Zbl 1111.74517
[27] Rabczuk T., Kim J.Y., Samaniego E., Belytschko T.: Homogenization of sandwich structures. Int. J. Numer. Meth. Eng. 61(7), 1009–1027 (2004) · Zbl 1075.74616
[28] Luo S., Suhling J.C., Considine J.M., Laufenberg T.L.: The bending stiffnesses of corrugated board. In: Perkins, R.W. (eds) Mechanics of Cellulosic Materials, AMD-145/MD-36, pp. 15–26. ASME, New York (1992)
[29] Qiao P., Wang J.: Transverse shear stiffness of composite honeycomb cores and efficiency of material. Mech. Adv. Mater. Struct. 12(2), 159–172 (2005)
[30] Davalos J.F., Qiao P., Xu X.F., Robinson J., Barth K.E.: Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Compos. Struct. 52(3), 441–452 (2001)
[31] Chen A., Davalos J.F.: Transverse shear including skin effect for composite sandwich with honeycomb sinusoidal core. ASCE J. Eng. Mech. 133, 247–256 (2007)
[32] Jiang W., Yang J.L.: Energy-absorption behavior of a metallic double-sine-wave beam under axial crushing. Thin-Walled Struct. 47(11), 1168–1176 (2009)
[33] Chen W., Wierzbicki T., Santosa S.: Bending collapse of thin-walled beams with ultralight filler: numerical simulation and weight optimization. Acta Mech. 153(3), 183–206 (2002) · Zbl 1035.74032
[34] Guo L.W., Yu J.L., Li Z.B.: Experimental studies on the quasi-static bending behavior of double square tubes filled with aluminum foam. Acta Mech. 213(3), 349–358 (2010) · Zbl 1397.74003
[35] Guo L.W., Yu J.L.: Bending behavior of aluminum foam-filled double cylindrical tubes. Acta Mech. 222, 233–244 (2011) · Zbl 1398.74055
[36] Gill S.S.: Large deflection rigid-plastic analysis of a built-in semi-circular arch. Int. J. Mech. Eng. Educ. 4, 339–355 (1976)
[37] ABAQUS analysis user’s manual, version 6.8
[38] Deshpande V.S., Fleck N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48(6–7), 1253–1283 (2000) · Zbl 0984.74018
[39] Qiu X., Deshpande V.S., Fleck N.A.: Dynamic response of a clamped circular sandwich plate subject to shock loading. ASME J. Appl. Mech. 71(5), 637–645 (2004) · Zbl 1111.74601
[40] Zhang J.X., Qin Q.H., Wang T.J.: The resistance of metallic sandwich plates to blast loading. Key Eng. Mater. 462–463, 349–354 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.