×

zbMATH — the first resource for mathematics

Hamiltonian-minimal Lagrangian submanifolds in toric varieties. (English. Russian original) Zbl 1275.53074
Russ. Math. Surv. 68, No. 2, 392-394 (2013); translation from Usp. Mat. Nauk. 68, No. 2, 203-204 (2013).
In a symplectic manifold, a Lagrangian submanifold is said to be H-minimal if the variations of its volume along all Hamiltonian vector fields are zero. In this paper, a construction of H-minimal submanifolds in toric varieties is given.

MSC:
53D12 Lagrangian submanifolds; Maslov index
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Yong-Geun Oh, Math. Z., 212:1 (1993), 175 – 192 · Zbl 0791.53050 · doi:10.1007/BF02571651 · eudml:174480
[2] А. Е. Миронов, Матем. сб., 195:1 (2004), 89 – 102 · Zbl 1078.53079 · doi:10.1070/SM2004v195n01ABEH000794 · arxiv:math/0309128
[3] А. Е. Миронов, Т. Е. Панов, Функц. анализ и его прил., 47:1 (2013), 47 – 61 · mi.mathnet.ru · mi.mathnet.ru
[4] Yuxin Dong, Nonlinear Anal., 67:3 (2007), 865 – 882 · Zbl 1126.53035 · doi:10.1016/j.na.2006.06.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.