×

zbMATH — the first resource for mathematics

Arithmetic properties of mirror maps associated with Gauss hypergeometric equations. (English) Zbl 1314.33005
A catalog of hypergeometric differential equations is constructed with maximal unipotent monodromy at the origin whose mirror map has integral Taylor coefficients up to a rescaling. For infinitely many primes \(p\) in certain arithmetic progressions, the mirror maps are shown to exhibit \(p\)-adic integrality. Mirror maps with the above properties are parameterized by modular functions.

MSC:
33C05 Classical hypergeometric functions, \({}_2F_1\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] André, Y, \(G\)-fonctions et transcendance, J. Reine Angew. Math., 476, 95-125, (1996) · Zbl 0848.11033
[2] Delaygue, E.: Intégralité des coefficients de taylor de racines d’applications miroir. Journal de Théorie des Nombres de Bordeaux, (2011) · Zbl 1297.11072
[3] Delaygue, E.: Propriétés arithmétiques des applications miroir. Thèse, Grenoble. http://www.theses.fr/2011GRENM032, (2011)
[4] Delaygue, E, Critère pour l’intégralité des coefficients de Taylor des applications miroir, J. Reine Angew. Math., 662, 205-252, (2012) · Zbl 1271.11066
[5] Dwork, B, On \(p\)-adic differential equations, IV. generalized hypergeometric functions as \(p\)-adic analytic functions in one variable, Ann. Sci. École Norm. Sup., 6, 295-315, (1973) · Zbl 0309.14020
[6] Katz, N.M.: Exponential Sums and Differential Equations, Volume 124 of Annals of Mathematics Studies. Princeton University Press, Princeton (1990) · Zbl 0731.14008
[7] Krattenthaler, C; Rivoal, T, On the integrality of the Taylor coefficients of mirror maps II, Commun. Number Theory Phys., 3, 555-591, (2009) · Zbl 1186.14042
[8] Krattenthaler, C; Rivoal, T, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J., 151, 175-218, (2010) · Zbl 1267.11077
[9] Krattenthaler, C., Rivoal, T.: Analytic properties of mirror maps. J. Aust. Math. Soc., (2011) · Zbl 1278.30004
[10] Lian, BH; Yau, S-T, Arithmetic properties of mirror map and quantum coupling, Comm. Math. Phys., 176, 163-191, (1996) · Zbl 0867.14017
[11] Lian, B.H., Yau, S.-T.: Integrality of certain exponential series. In: Algebra and geometry (Taipei 1995), vol. 2 of Lectures for Algebraic Geometry, pp 215-227. International Press, Cambridge (1998) · Zbl 0309.14020
[12] Lian, B.H., Yau, S.-T.: The \(n\)th root of the mirror map. In: Calabi-Yau varieties and mirror symmetry (Toronto 2001), vol. 38 of Fields Institute Communication, pp 195-199. American Mathematical Society Providence, RI (2003) · Zbl 1271.11066
[13] Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966) · Zbl 0135.28101
[14] Zudilin, VV, On the integrality of power expansions related to hypergeometric series, Mat. Zametki, 71, 662-676, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.