×

Distributions of charged massive scalars and fermions from evaporating higher-dimensional black holes. (English) Zbl 1270.83033

Summary: A detailed numerical analysis is performed to obtain the Hawking spectrum for charged, massive brane scalars and fermions on the approximate background of a brane charged rotating higher-dimensional black hole constructed in [The author, ibid. 2009, No. 10, Paper No. 008 (2009)]. We formulate the problem in terms of a ”spinor-like” first order system of differential wave equations not only for fermions, but for scalars as well and integrate it numerically. Flux spectra are presented for non-zero mass, charge and rotation, confirming and extending previous results based on analytic approximations. In particular we describe an inverted charge splitting at low energies, which is not present in four or five dimensions and increases with the number of extra dimensions. This provides another signature of the evaporation of higher-dimensional black holes in TeV scale gravity scenarios.

MSC:

83C57 Black holes
83E15 Kaluza-Klein and other higher-dimensional theories
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Sampaio, MOP, Charge and mass effects on the evaporation of higher-dimensional rotating black holes, JHEP, 10, 008, (2009)
[2] Hawking, SW, Particle creation by black holes, Commun. Math. Phys., 43, 199, (1975)
[3] Regge, T.; Wheeler, JA, Stability of a Schwarzschild singularity, Phys. Rev., 108, 1063, (1957)
[4] Teukolsky, SA, Perturbations of a rotating black hole. 1. fundamental equations for gravitational electromagnetic and neutrino field perturbations, Astrophys. J., 185, 635, (1973)
[5] Press, WH; Teukolsky, SA, Perturbations of a rotating black hole. II. dynamical stability of the Kerr metric, Astrophys J., 185, 649, (1973)
[6] Teukolsky, SA; Press, WH, Perturbations of a rotating black hole. III - interaction of the hole with gravitational and electromagnet ic radiation, Astrophys. J., 193, 443, (1974)
[7] Dolan, SR, Scattering and absorption of gravitational plane waves by rotating black holes, Class. Quant. Grav., 25, 235002, (2008)
[8] Page, DN; Hawking, SW, Gamma rays from primordial black holes, Astrophys. J., 206, 1, (1976)
[9] Hawking, SW, Information loss in black holes, Phys. Rev., D 72, 084013, (2005)
[10] Rovelli, C., Loop quantum gravity, Living Rev. Rel., 11, 5, (2008)
[11] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. vol. 1: Introduction, Cambridge Monographs On Mathematical Physics, Cambridge University Press, Cambridge U.K. (1987) pg. 469.
[12] Antoniadis, I., A possible new dimension at a few TeV, Phys. Lett., B 246, 377, (1990)
[13] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, GR, The hierarchy problem and new dimensions at a millimeter, Phys. Lett., B 429, 263, (1998)
[14] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, GR, New dimensions at a millimeter to afermi and superstrings at a TeV, Phys. Lett., B 436, 257, (1998)
[15] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, GR, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev., D 59, 086004, (1999)
[16] Randall, L.; Sundrum, R., An alternative to compactification, Phys. Rev. Lett., 83, 4690, (1999)
[17] Randall, L.; Sundrum, R., A large mass hierarchy from a small extra dimension, Phys. Rev. Lett., 83, 3370, (1999)
[18] Flacke, T.; Hooper, D.; March-Russell, J., Improved bounds on universal extra dimensions and consequences for LKP dark matter, Phys. Rev., D 73, 095002, (2006)
[19] Arkani-Hamed, N.; Schmaltz, M., Hierarchies without symmetries from extra dimensions, Phys. Rev., D 61, 033005, (2000)
[20] Arkani-Hamed, N.; Grossman, Y.; Schmaltz, M., Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev., D 61, 115004, (2000)
[21] Giddings, SB; Thomas, SD, High energy colliders as black hole factories: the end of short distance physics, Phys. Rev., D 65, 056010, (2002)
[22] Dimopoulos, S.; Landsberg, GL, Black holes at the LHC, Phys. Rev. Lett., 87, 161602, (2001)
[23] Argyres, PC; Dimopoulos, S.; March-Russell, J., Black holes and sub-millimeter dimensions, Phys. Lett., B 441, 96, (1998)
[24] Eardley, DM; Giddings, SB, Classical black hole production in high-energy collisions, Phys. Rev., D 66, 044011, (2002)
[25] Sperhake, U.; Cardoso, V.; Pretorius, F.; Berti, E.; Gonzalez, JA, The high-energy collision of two black holes, Phys. Rev. Lett., 101, 161101, (2008)
[26] Shibata, M.; Okawa, H.; Yamamoto, T., High-velocity collision of two black holes, Phys. Rev., D 78, 101501, (2008)
[27] Sperhake, U.; etal., Cross section, final spin and zoom-whirl behavior in high- energy black hole collisions, Phys. Rev. Lett., 103, 131102, (2009)
[28] M.W. Choptuik and F. Pretorius, Ultra relativistic particle collisions, arXiv:0908.1780 [SPIRES].
[29] Harris, CM; Richardson, P.; Webber, BR, CHARYBDIS: a black hole event generator, JHEP, 08, 033, (2003)
[30] Cavaglia, M.; Godang, R.; Cremaldi, L.; Summers, D., Catfish: a Monte Carlo simulator for black holes at the LHC, Comput. Phys. Commun., 177, 506, (2007)
[31] Dai, D-C; etal., Blackmax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev., D 77, 076007, (2008)
[32] Frost, JA; etal., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP, 10, 014, (2009)
[33] Myers, RC; Perry, MJ, Black holes in higher dimensional space-times, Ann. Phys., 172, 304, (1986)
[34] Unruh, WG, Second quantization in the Kerr metric, Phys. Rev., D 10, 3194, (1974)
[35] Gibbons, GW, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys., 44, 245, (1975)
[36] Candelas, P.; Chrzanowski, P.; Howard, KW, Quqntization of electromagnetic and gravitational perturbations of a kess black hole, Phys. Rev., D 24, 297, (1981)
[37] Ottewill, AC; Winstanley, E., The renormalized stress tensor in Kerr space-time: general results, Phys. Rev., D 62, 084018, (2000)
[38] Casals, M.; Ottewill, AC, Canonical quantization of the electromagnetic field on the Kerr background, Phys. Rev., D 71, 124016, (2005)
[39] Ida, D.; Oda, K-y; Park, SC, Rotating black holes at future colliders: greybody factors for brane fields, Phys. Rev., D 67, 064025, (2003)
[40] Harris, CM; Kanti, P., Hawking radiation from a (4+n)-dimensional black hole: exact results for the Schwarzschild phase, JHEP, 10, 014, (2003)
[41] Harris, CM; Kanti, P., Hawking radiation from a (4+n)-dimensional rotating black hole, Phys. Lett., B 633, 106, (2006)
[42] Ida, D.; Oda, K-y; Park, SC, Rotating black holes at future colliders. II: anisotropic scalar field emission, Phys. Rev., D 71, 124039, (2005)
[43] Duffy, G.; Harris, C.; Kanti, P.; Winstanley, E., Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles, JHEP, 09, 049, (2005)
[44] Casals, M.; Kanti, P.; Winstanley, E., Brane decay of a (4+n)-dimensional rotating black hole. II: spin-1 particles, JHEP, 02, 051, (2006)
[45] Cardoso, V.; Cavaglia, M.; Gualtieri, L., Black hole particle emission in higher-dimensional spacetimes, Phys. Rev. Lett., 96, 071301, (2006)
[46] Cardoso, V.; Cavaglia, M.; Gualtieri, L., Hawking emission of gravitons in higher dimensions: non- rotating black holes, JHEP, 02, 021, (2006)
[47] Ida, D.; Oda, K-y; Park, SC, Rotating black holes at future colliders. III: determination of black hole evolution, Phys. Rev., D 73, 124022, (2006)
[48] Casals, M.; Dolan, SR; Kanti, P.; Winstanley, E., Brane decay of a (4+n)-dimensional rotating black hole. III: spin-1/2 particles, JHEP, 03, 019, (2007)
[49] Casals, M.; Dolan, SR; Kanti, P.; Winstanley, E., Bulk emission of scalars by a rotating black hole, JHEP, 06, 071, (2008)
[50] Bardeen, JM; Press, WH; Teukolsky, SA, Rotating black holes: locally nonrotating frames, energy extraction and scalar synchrotron radiation, Astrophys. J., 178, 347, (1972)
[51] S. Chandrasekhar, The mathematical theory of black holes, Clarendon, Oxford U.K. (1992) pg. 646.
[52] Dudley, AL; Finley, JD, Separation of wave equations for perturbations of general type-D space-times, Phys. Rev. Lett., 38, 1505, (1977)
[53] Kokkotas, KD, Quasinormal modes of the Kerr-Newman black hole, Nuovo Cim., B 108, 991, (1993)
[54] Berti, E.; Kokkotas, KD, Quasinormal modes of Kerr-Newman black holes: coupling of electromagnetic and gravitational perturbations, Phys. Rev., D 71, 124008, (2005)
[55] Rogatko, M.; Szyplowska, A., Massive fermion emission from higher dimensional black holes, Phys. Rev., D 79, 104005, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.