zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controller design for a second-order plant with uncertain parameters and disturbance: application to a DC motor. (English) Zbl 1271.93144
Summary: This paper shows the controller design for a second-order plant with unknown varying behavior in the parameters and in the disturbance. The state adaptive backstepping technique is used as control framework, but important modifications are introduced. The controller design achieves mainly the following two benefits: upper or lower bounds of the time-varying parameters of the model are not required, and the formulation of the control and update laws and stability analysis are simpler than closely related works that use the Nussbaum’s gain method. The controller has been developed and tested for a DC motor speed control and it has been implemented in a rapid control prototyping system based on Digital Signal Processing for dSPACE platform. The motor speed converges to a predefined desired output signal.
MSC:
93E03General theory of stochastic systems
93B51Design techniques in systems theory
93C95Applications of control theory
WorldCat.org
Full Text: DOI
References:
[1] Z. Li, J. Chen, G. Zhang, and M. G. Gan, “Adaptive robust control for DC motors with input saturation,” IET Control Theory & Applications, vol. 5, no. 16, pp. 1895-1905, 2011. · doi:10.1049/iet-cta.2010.0415
[2] J. Linares-Flores, J. Reger, and H. Sira-Ramirez, “Load torque estimation and passivity-based control of a boost-converter/DC-motor combination,” IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1398-1405, 2010. · doi:10.1109/TCST.2009.2037809
[3] M. A. Khanesar, O. Kaynak, and M. Teshnehlab, “Direct model reference Takagi-Sugeno fuzzy control of SISO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 5, pp. 914-924, 2011. · doi:10.1109/TFUZZ.2011.2150757
[4] I. Kanellakopoulos, P. V. Kokotović, and A. S. Morse, “Systematic design of adaptive controllers for feedback linearizable systems,” IEEE Transactions on Automatic Control, vol. 36, no. 11, pp. 1241-1253, 1991. · Zbl 0768.93044 · doi:10.1109/9.100933
[5] Y. Hong and B. Yao, “A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments,” Automatica, vol. 43, no. 10, pp. 1840-1848, 2007. · Zbl 1119.93028 · doi:10.1016/j.automatica.2007.03.021
[6] S. Tong and Y. Li, “Fuzzy adaptive robust backstepping stabilization for SISO nonlinear systems with unknown virtual control direction,” Information Sciences, vol. 180, no. 23, pp. 4619-4640, 2010. · Zbl 1205.93136 · doi:10.1016/j.ins.2010.07.025
[7] F. J. Lin, P. H. Shieh, and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 676-692, 2008. · doi:10.1109/TFUZZ.2007.903333
[8] F. J. Lin, L. T. Teng, C. Y. Chen, and Y. C. Hung, “FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive,” IET Electric Power Applications, vol. 2, no. 6, pp. 325-340, 2008. · doi:10.1049/iet-epa:20070178
[9] A. El Magri, F. Giri, A. Abouloifa, and F. Z. Chaoui, “Robust control of synchronous motor through AC/DC/AC converters,” Control Engineering Practice, vol. 18, no. 5, pp. 540-553, 2010. · doi:10.1016/j.conengprac.2010.02.005
[10] J. Zhou, C. Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis,” IEEE Transactions on Automatic Control, vol. 49, no. 10, pp. 1751-1757, 2004. · doi:10.1109/TAC.2004.835398
[11] J. Zhou, C. Wen, and Y. Zhang, “Adaptive backstepping control of a class of uncertain nonlinear systems with unknown dead-zone,” in Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, pp. 513-518, December 2004.
[12] J. Zhou, C. Wen, and W. Wang, “Adaptive backstepping control of uncertain systems with unknown input time-delay,” Automatica, vol. 45, no. 6, pp. 1415-1422, 2009. · Zbl 1166.93339 · doi:10.1016/j.automatica.2009.01.012
[13] C. Wen, J. Zhou, and W. Wang, “Decentralized adaptive backstepping stabilization of interconnected systems with dynamic input and output interactions,” Automatica, vol. 45, no. 1, pp. 55-67, 2009. · Zbl 1154.93426 · doi:10.1016/j.automatica.2008.06.018
[14] A.-C. Huang and Y.-S. Kuo, “Sliding control of non-linear systems containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol. 74, no. 3, pp. 252-264, 2001. · Zbl 1010.93020 · doi:10.1080/00207170010003441
[15] Y. Zhang, P. Y. Peng, and Z. P. Jiang, “Stable neural controller design for unknown nonlinear systems using backstepping,” IEEE Transactions on Neural Networks, vol. 11, no. 6, pp. 1347-1360, 2000.
[16] C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems,” Automatica, vol. 45, no. 2, pp. 532-538, 2009. · Zbl 1158.93325 · doi:10.1016/j.automatica.2008.08.012
[17] Y. Li, S. Qiang, X. Zhuang, and O. Kaynak, “Robust and adaptive backstepping control for nonlinear systems using RBF neural networks,” IEEE Transactions on Neural Networks, vol. 15, no. 3, pp. 693-701, 2004. · doi:10.1109/TNN.2004.826215
[18] J. Na, X. Ren, G. Herrmann, and Z. Qiao, “Adaptive neural dynamic surface control for servo systems with unknown dead-zone,” Control Engineering Practice, vol. 19, no. 11, pp. 1328-1343, 2011. · doi:10.1016/j.conengprac.2011.07.005
[19] D. Wang and J. Huang, “Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 195-202, 2005. · doi:10.1109/TNN.2004.839354
[20] C.-Y. Su, Y. Feng, H. Hong, and X. Chen, “Adaptive control of system involving complex hysteretic nonlinearities: a generalised Prandtl-Ishlinskii modelling approach,” International Journal of Control, vol. 82, no. 10, pp. 1786-1793, 2009. · Zbl 1178.93080 · doi:10.1080/00207170902736307
[21] Y. Feng, H. Hong, X. Chen, and C. Y. Su, “Robust adaptive controller design for a class of nonlinear systems preceded by generalized Prandtl-Ishlinskii hysteresis representation,” in Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA ’08), pp. 382-387, Chongqing, China, June 2008. · doi:10.1109/WCICA.2008.4592955
[22] Y. Feng, C. Y. Su, and H. Hong, “Universal construction of robust adaptive control laws for a class of nonlinear systems preceded by generalized Prandtl-Ishlinskii representation,” in Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications (ICIEA ’08), pp. 153-158, Singapore, June 2008. · doi:10.1109/ICIEA.2008.4582497
[23] Y. Feng, Y. M. Hu, and C. Y. Su, “Robust adaptive control for a class of perturbed strict-feedback nonlinear systems with unknown Prandtl-Ishlinskii hysteresis,” in Proceedings of the IEEE International Symposium on Intelligent Control (ISIC ’06), pp. 106-111, Munich, Germany, October 2006. · doi:10.1109/CACSD-CCA-ISIC.2006.4776632
[24] H. Du, S. S. Ge, and J. K. Liu, “Adaptive neural network output feedback control for a class of non-affine non-linear systems with unmodelled dynamics,” IET Control Theory and Applications, vol. 5, no. 3, pp. 465-477, 2011. · doi:10.1049/iet-cta.2010.0055
[25] S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” IEEE Transactions on Automatic Control, vol. 48, no. 8, pp. 1463-1469, 2003. · doi:10.1109/TAC.2003.815049
[26] Y. Xudong and J. Jingping, “Adaptive nonlinear design without a priori knowledge of control directions,” IEEE Transactions on Automatic Control, vol. 43, no. 11, pp. 1617-1621, 1998. · Zbl 0957.93048 · doi:10.1109/9.728882
[27] S. S. Ge and J. Wang, “Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems,” IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1409-1419, 2002. · doi:10.1109/TNN.2002.804306
[28] R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive control,” Systems and Control Letters, vol. 3, no. 5, pp. 243-246, 1983. · Zbl 0524.93037 · doi:10.1016/0167-6911(83)90021-X
[29] K. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesly, 2nd edition, 1995.
[30] S. Tong, C. Liu, and Y. Li, “Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 845-861, 2010. · doi:10.1109/TFUZZ.2010.2050326
[31] H. E. Psillakis, “Further results on the use of nussbaum gains in adaptive neural network control,” IEEE Transactions on Automatic Control, vol. 55, no. 12, pp. 2841-2846, 2010. · doi:10.1109/TAC.2010.2078070
[32] A. Rincon, F. Angulo, and G. Osorio, “A robust state feedback adaptive controller with improved transient tracking error bounds for plants with unknown varying control gain,” in Applications of Nonlinear Control, chapter 5, pp. 79-98, INTECH, 2012.
[33] M. M. Polycarpou and P. A. Ioannou, “On the existence and uniqueness of solutions in adaptive control systems,” IEEE Transactions on Automatic Control, vol. 38, no. 3, pp. 474-479, 1993. · Zbl 0789.93084 · doi:10.1109/9.210149
[34] J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ, USA, 1991. · Zbl 0753.93036
[35] A. Leva, L. Piroddi, M. Di Felice, A. Boer, and R. Paganini, “Adaptive relay-based control of household freezers with on-off actuators,” Control Engineering Practice, vol. 18, no. 1, pp. 94-102, 2010. · doi:10.1016/j.conengprac.2009.09.008
[36] M. D. Felice, L. Piroddi, A. Leva, and A. Boer, “Adaptive temperature control of a household refrigerator,” in Proceedings of the American Control Conference (ACC ’09), pp. 889-894, St. Louis, Mo, USA, June 2009. · doi:10.1109/ACC.2009.5159862
[37] H. Royden, Real Analysis, Prentice Hall, Upper Saddle River, NJ, USA, 1988. · Zbl 0704.26006
[38] P. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, Upper Saddle River, NJ, USA, 1996. · Zbl 0839.93002