×

Strong convergence theorems for semigroups of asymptotically nonexpansive mappings in Banach spaces. (English) Zbl 1483.47116

Summary: Let \(X\) be a real reflexive Banach space with a weakly continuous duality mapping \(J_\varphi\). Let \(C\) be a nonempty weakly closed star-shaped (with respect to \(u\)) subset of \(X\). Let \(\mathcal{F} = \{T(t) : t \in [0, +\infty]\}\) be a uniformly continuous semigroup of asymptotically nonexpansive self-mappings of \(C\), which is uniformly continuous at zero. We will show that the implicit iteration scheme \(y_n = \alpha_n u + (1 - \alpha_n)T(t_n)y_n\), for all \(n \in \mathbb N\), converges strongly to a common fixed point of the semigroup \(\mathcal F\) for some suitably chosen parameters \(\{\alpha_n\}\) and \(\{t_n\}\). Our results extend and improve corresponding ones of T. Suzuki [Proc. Am. Math. Soc. 131, No. 7, 2133–2136 (2003; Zbl 1031.47038)], H.-K. Xu [Bull. Aust. Math. Soc. 72, No. 3, 371–379 (2005; Zbl 1095.47016)], and H. Zegeye and N. Shahzad [Numer. Funct. Anal. Optim. 30, No. 7–8, 833–848 (2009; Zbl 1177.47084)].

MSC:

47J26 Fixed-point iterations
47H20 Semigroups of nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Goebel, K.; Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 35, 171-174 (1972) · Zbl 0256.47045 · doi:10.1090/S0002-9939-1972-0298500-3
[2] Benavides, T. D.; Ramírez, P. L., Structure of the fixed point set and common fixed points of asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 129, 12, 3549-3557 (2001) · Zbl 0985.47041 · doi:10.1090/S0002-9939-01-06141-X
[3] Browder, F. E., Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Archive for Rational Mechanics and Analysis, 24, 82-90 (1967) · Zbl 0148.13601
[4] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, Journal of Mathematical Analysis and Applications, 75, 1, 287-292 (1980) · Zbl 0437.47047 · doi:10.1016/0022-247X(80)90323-6
[5] Ceng, L. C.; Khan, A. R.; Ansari, Q. H.; Yao, J. C., Viscosity approximation methods for strongly positive and monotone operators, Fixed Point Theory, 10, 1, 35-71 (2009) · Zbl 1196.47044
[6] Ceng, L. C.; Xu, H. K.; Yao, J. C., The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 69, 4, 1402-1412 (2008) · Zbl 1142.47326 · doi:10.1016/j.na.2007.06.040
[7] Ceng, L. C.; Wong, N. C.; Yao, J. C., Fixed point solutions of variational inequalities for a finite family of asymptotically nonexpansive mappings without common fixed point assumption, Computers & Mathematics with Applications, 56, 9, 2312-2322 (2008) · Zbl 1165.49007 · doi:10.1016/j.camwa.2008.05.002
[8] Fukhar-ud-din, H.; Khan, A. R., Approximating common fixed points of asymptotically nonexpansive maps in uniformly convex Banach spaces, Computers & Mathematics with Applications, 53, 9, 1349-1360 (2007) · Zbl 1134.47049 · doi:10.1016/j.camwa.2007.01.008
[9] Fukhar-ud-din, H.; Khan, A. R.; Regan, D. O.; Agarwal, R. P., An implicit iteration scheme with errors for a finite family of uniformly continuous mappings, Functional Differential Equations, 14, 2-4, 245-256 (2007) · Zbl 1159.47039
[10] Lim, T. C.; Xu, H. K., Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Analysis: Theory, Methods & Applications, 22, 11, 1345-1355 (1994) · Zbl 0812.47058 · doi:10.1016/0362-546X(94)90116-3
[11] Sahu, D. R.; Agarwal, R. P.; O’Regan, D., Structure of the fixed point set of asymptotically nonexpansive mappings in Banach spaces with weak uniformly normal structure, Journal of Applied Analysis, 17, 1, 51-68 (2011) · Zbl 1276.47070 · doi:10.1515/JAA.2011.003
[12] Sahu, D. R.; Liu, Z.; Kang, S. M., Iterative approaches to common fixed points of asymptotically nonexpansive mappings, The Rocky Mountain Journal of Mathematics, 39, 1, 281-304 (2009) · Zbl 1163.47055 · doi:10.1216/RMJ-2009-39-1-281
[13] Schu, J., Approximation of fixed points of asymptotically nonexpansive mappings, Proceedings of the American Mathematical Society, 112, 1, 143-151 (1991) · Zbl 0734.47037 · doi:10.2307/2048491
[14] Suzuki, T., On strong convergence to common fixed points of nonexpansive semigroups in Hilbert spaces, Proceedings of the American Mathematical Society, 131, 7, 2133-2136 (2003) · Zbl 1031.47038 · doi:10.1090/S0002-9939-02-06844-2
[15] Xu, H. K., A strong convergence theorem for contraction semigroups in Banach spaces, Bulletin of the Australian Mathematical Society, 72, 3, 371-379 (2005) · Zbl 1095.47016 · doi:10.1017/S000497270003519X
[16] Zegeye, H.; Shahzad, N., Strong convergence theorems for continuous semigroups of asymptotically nonexpansive mappings, Numerical Functional Analysis and Optimization, 30, 7-8, 833-848 (2009) · Zbl 1177.47084 · doi:10.1080/01630560903123197
[17] Agarwal, R. P.; O’Regan, D.; Sahu, D. R., Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological Fixed Point Theory and Its Applications, 6 (2009), New York, NY, USA: Springer, New York, NY, USA · Zbl 1176.47037 · doi:10.1007/978-0-387-75818-3
[18] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems (1990), Dordrecht, The Netherlands: Kluwer Academic Publishers, Dordrecht, The Netherlands · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4
[19] Browder, F. E., Convergence theorems for sequences of nonlinear operators in Banach spaces, Mathematische Zeitschrift, 100, 201-225 (1967) · Zbl 0149.36301 · doi:10.1007/BF01109805
[20] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), Marcel Dekker · Zbl 0537.46001
[21] Xu, H. K., Viscosity approximation methods for nonexpansive mappings, Journal of Mathematical Analysis and Applications, 298, 1, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059
[22] Morales, C. H.; Jung, J. S., Convergence of paths for pseudo-contractive mappings in Banach spaces, Proceedings of the American Mathematical Society, 128, 11, 3411-3419 (2000) · Zbl 0970.47039 · doi:10.1090/S0002-9939-00-05573-8
[23] Morales, C. H., Strong convergence of path for continuous pseudo-contractive mappings, Proceedings of the American Mathematical Society, 135, 9, 2831-2838 (2007) · Zbl 1121.47055 · doi:10.1090/S0002-9939-07-08910-1
[24] Rhoades, B. E., Some theorems on weakly contractive maps, Nonlinear Analysis: Theory, Methods & Applications, 47, 4, 2683-2693 (2001) · Zbl 1042.47521 · doi:10.1016/S0362-546X(01)00388-1
[25] Alber, Y. I.; Chidume, C. E.; Zegeye, H., Approximating fixed points of total asymptotically nonexpansive mappings, Fixed Point Theory and Applications, 2006 (2006) · Zbl 1105.47057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.