zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A local fractional variational iteration method for Laplace equation within local fractional operators. (English) Zbl 1273.65158
Summary: The local fractional variational iteration method for local fractional Laplace equation is investigated in this paper. The operators are described in the sense of local fractional operators. The obtained results reveal that the method is very effective.

MSC:
65M99Numerical methods for IVP of PDE
35R11Fractional partial differential equations
WorldCat.org
Full Text: DOI
References:
[1] R. D. Driver, Ordinary and Delay Differential Equations, Springer, Berlin, Germany, 1977. · Zbl 0542.34024
[2] A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema Publishers, Leiden, The Netherlands, 2002. · Zbl 1079.35001
[3] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[4] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, Singapore, 2000. · Zbl 1111.93302 · doi:10.1142/9789812817747
[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[6] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, Mass, USA, 1994. · Zbl 0843.34026
[7] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, 2012. · Zbl 1256.35192 · doi:10.1007/s10773-012-1169-8
[8] A.-M. Wazwaz, A First Course in Integral Equations, World Scientific Publishing, Singapore, 1997. · Zbl 0924.45001
[9] J.-H. He, “Variational iteration method for autonomous ordinary differential systems,” Applied Mathematics and Computation, vol. 114, no. 2-3, pp. 115-123, 2000. · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[10] J.-H. He, “Variational approach for nonlinear oscillators,” Chaos, Solitons & Fractals, vol. 34, no. 5, pp. 1430-1439, 2007. · Zbl 1152.34327 · doi:10.1016/j.chaos.2006.10.026
[11] J. H. He, “Variational iteration method-a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699-708, 1999. · Zbl 05137891
[12] J. H. He, “Comment on variational iteration method for fractional calculus using He’s polynomials,” Abstract and Applied Analysis, vol. 2012, Article ID 964974, 2 pages, 2012. · Zbl 1256.65091 · doi:10.1155/2012/964974
[13] S. T. Mohyud-Din, M. A. Noor, K. I. Noor, and M. M. Hosseini, “Solution of singular equation by He’s variational iteration method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, no. 2, pp. 81-86, 2010.
[14] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[15] J. H. He, G. C. Wu, and F. Austin, “The variational iteration method which should be followed,” Nonlinear Science Letters A, vol. 1, no. 1, pp. 1-30, 2010.
[16] M. Tatari and M. Dehghan, “He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation,” Chaos, Solitons & Fractals, vol. 33, no. 2, pp. 671-677, 2007. · Zbl 1131.65084 · doi:10.1016/j.chaos.2006.01.059
[17] S. Momani and S. Abuasad, “Application of He’s variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119-1123, 2006. · Zbl 1086.65113 · doi:10.1016/j.chaos.2005.04.113
[18] Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27-34, 2006. · Zbl 05675858
[19] L. Xu, “Variational iteration method for solving integral equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 1071-1078, 2007. · Zbl 1141.65400 · doi:10.1016/j.camwa.2006.12.053
[20] J.-H. He, “A short remark on fractional variational iteration method,” Physics Letters A, vol. 375, no. 38, pp. 3362-3364, 2011. · Zbl 1252.49027 · doi:10.1016/j.physleta.2011.07.033
[21] G.-c. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506-2509, 2010. · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034
[22] Y. Khan, N. Faraz, A. Yildirim, and Q. Wu, “Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science,” Computers & Mathematics with Applications, vol. 62, no. 5, pp. 2273-2278, 2011. · Zbl 1231.35288 · doi:10.1016/j.camwa.2011.07.014
[23] J.-H. He, S. K. Elagan, and Z. B. Li, “Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus,” Physics Letters A, vol. 376, no. 4, pp. 257-259, 2012. · Zbl 1255.26002 · doi:10.1016/j.physleta.2011.11.030
[24] Z. B. Li and J. H. He, “Application of the fractional complex transform to fractional differential equations,” Nonlinear Science Letters A, vol. 2, no. 3, pp. 121-126, 2011.
[25] Z. B. Li, W. H. Zhu, and J. H. He, “Exact solutions of time-fractional heat conduction equation by the fractional complex transform,” Thermal Science, vol. 16, no. 2, pp. 335-338, 2012.
[26] Q. L. Wang, J. H. He, and Z. B. Li, “Fractional model for heat conduction in polar bear hairs,” Thermal Science, vol. 16, no. 2, pp. 339-342, 2012.
[27] J. H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis, vol. 2012, Article ID 916793, 130 pages, 2012. · Zbl 1257.35158 · doi:10.1155/2012/916793
[28] S. T. Mohyud-Din, A. Yildirim, and G. Demirli, “Analytical solution of wave system in Rn with coupling controllers,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21, no. 2, pp. 198-205, 2011. · Zbl 1231.65248 · doi:10.1108/09615531111105399
[29] S. T. Mohyud-Din, A. Yıldırım, and S. Sarıaydın, “Numerical soliton solution of the Kaup-Kupershmidt equation,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21, no. 3-4, pp. 272-281, 2011. · Zbl 1231.65195 · doi:10.1108/09615531111108459
[30] S. T. Mohyud-Din, A. Yıldırım, and S. A. Sezer, “Numerical soliton solutions of improved Boussinesq equation,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21, no. 6-7, pp. 822-827, 2011. · doi:10.1108/09615531111162800
[31] M. A. Abdou, A. A. Soliman, and S. T. El-Basyony, “New application of Exp-function method for improved Boussinesq equation,” Physics Letters A, vol. 369, no. 5-6, pp. 469-475, 2007. · Zbl 1209.81091 · doi:10.1016/j.physleta.2007.05.039
[32] S. A. El-Wakil, M. A. Madkour, and M. A. Abdou, “Application of Exp-function method for nonlinear evolution equations with variable coefficients,” Physics Letters A, vol. 369, no. 1-2, pp. 62-69, 2007. · Zbl 1209.81097 · doi:10.1016/j.physleta.2007.04.075
[33] J. H. He, “An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering,” International Journal of Modern Physics B, vol. 22, no. 21, pp. 3487-3578, 2008. · Zbl 1149.76607 · doi:10.1142/S0217979208048668
[34] S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, “Some relatively new techniques for nonlinear problems,” Mathematical Problems in Engineering, vol. 2009, Article ID 234849, 25 pages, 2009. · Zbl 1184.35280 · doi:10.1155/2009/234849 · eudml:45810
[35] W.-X. Ma, H. Wu, and J. He, “Partial differential equations possessing Frobenius integrable decompositions,” Physics Letters A, vol. 364, no. 1, pp. 29-32, 2007. · Zbl 1203.35059 · doi:10.1016/j.physleta.2006.11.048
[36] W. X. Ma and Y. You, “Rational solutions of the Toda lattice equation in Casoratian form,” Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 395-406, 2004. · Zbl 1090.37053 · doi:10.1016/j.chaos.2004.02.011
[37] X. J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, 2012. · doi:10.2298/TSCI121124216Y
[38] X. J. Yang, “Local fractional integral transforms,” Progress in Nonlinear Science, vol. 4, pp. 1-225, 2011.
[39] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011.
[40] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
[41] W. P. Zhong, X. J. Yang, and F. Gao, “A Cauchy problem for some local fractional abstract differential equation with fractal conditions,” Journal of Applied Functional Analysis, vol. 8, no. 1, pp. 92-99, 2013. · Zbl 1279.26022
[42] M. S. Hu, R. P. Agarwal, and X. J. Yang, “Local fractional Fourier series with application to wave equation in fractal vibrating string,” Abstract and Applied Analysis, vol. 2012, Article ID 567401, 15 pages, 2012. · Zbl 1257.35193 · doi:10.1155/2012/567401
[43] M. S. Hu, D. Baleanu, and X. J. Yang, “One-phase problems for discontinuous heat transfer in fractal media,” Mathematical Problems in Engineering, vol. 2013, Article ID 358473, 3 pages, 2013. · Zbl 1296.80006 · doi:10.1155/2013/358473
[44] K. M. Kolwankar and A. D. Gangal, “Fractional differentiability of nowhere differentiable functions and dimensions,” Chaos, vol. 6, no. 4, pp. 505-513, 1996. · Zbl 1055.26504 · doi:10.1063/1.166197
[45] J. H. He, “A new fractal derivation,” Thermal Science, vol. 15, pp. S145-S147, 2011.
[46] W. Chen, “Time-space fabric underlying anomalous diffusion,” Chaos, Solitons & Fractals, vol. 28, no. 4, pp. 923-929, 2006. · Zbl 1098.60078 · doi:10.1016/j.chaos.2005.08.199
[47] J. Fan and J. H. He, “Biomimic design of multi-scale fabric with efficient heat transfer property,” Thermal Science, vol. 16, no. 5, pp. 1349-1352, 2012.
[48] J. Fan and J. H. He, “Fractal derivative model for air permeability in hierarchic porous media,” Abstract and Applied Analysis, vol. 2012, Article ID 354701, 7 pages, 2012. · Zbl 1255.76131 · doi:10.1155/2012/354701
[49] A. Liangprom and K. Nonlaopon, “On the convolution equation related to the diamond Klein-Gordon operator,” Abstract and Applied Analysis, vol. 2011, Article ID 908491, 16 pages, 2011. · Zbl 1243.46033 · doi:10.1155/2011/908491