Siddiqi, Shahid S.; Iftikhar, Muzammal Numerical solution of higher order boundary value problems. (English) Zbl 1416.65216 Abstr. Appl. Anal. 2013, Article ID 427521, 12 p. (2013). Summary: The aim of this paper is to use the homotopy analysis method (HAM), an approximating technique for solving linear and nonlinear higher order boundary value problems. Using HAM, approximate solutions of seventh-, eighth-, and tenth-order boundary value problems are developed. This approach provides the solution in terms of a convergent series. Approximate results are given for several examples to illustrate the implementation and accuracy of the method. The results obtained from this method are compared with the exact solutions and other methods [G. Akram and H. U. Rehman, Numer. Algorithms 62, No. 3, 527–540 (2013; Zbl 1281.65101); K. Farajeyan and N. R. Maleki, “Numerical solution of tenth-order boundary value problems in off step points,” J. Basic Appl. Sci. Res. 2, No. 6, 6235–6244 (2012); F. Geng and X. Li, Math. Sci. Q. J. 3, No. 2, 161–172 (2009; Zbl 1206.65203); A. Golbabai and M. Javidi, Appl. Math. Comput. 191, No. 2, 334–346 (2007; Zbl 1193.65148); J.-H. He, Phys. Scr. 76, No. 6, 680–682 (2007; Zbl 1134.34307); M. Inc and D. J. Evans, Int. J. Comput. Math. 81, No. 6, 685–692 (2004; Zbl 1060.65078); A. Lamnii et al., Appl. Math. E-Notes 8, 171–178 (2008; Zbl 1159.65077); the first author and G. Akram, Int. J. Comput. Math. 84, No. 3, 347–368 (2007; Zbl 1117.65115); the first author et al., “Solution of seventh order boundary value problem by differential transformation method”, World Appl. Sci. J. 16, No. 11, 1521–1526 (2012); the first author et al., “Solution of tenth order boundary value problems using variational iteration technique,” Eur. J. Sci. Res. 30, No. 3, 326–347 (2009); the authors, “Solution of seventh order boundary value problems by variation of parameters method,” Res. J. Appl. Sci., Eng. Technol. 5, No. 1, 176–179 (2013); the first author and E. H. Twizell, Comput. Methods Appl. Mech. Eng. 131, No. 3–4, 309–325 (1996; Zbl 0881.65076); the first author and E. H. Twizell, Int. J. Comput. Math. 68, No. 3–4, 345–362 (1998; Zbl 0920.65049); M. Torvattanabun and S. Koonprasert, Thai J. Math. 8, 121–129 (2010; Zbl 1238.65087); K. N. S. KasiViswanadham and Y. S. Raju, “Quintic B-spline collocation method for tenth order boundary value problems”, Int. J. Comput. Appl. 51, No. 15, 7–13 (2012; doi:10.5120/8116-1735)] revealing that the present method is more accurate. Cited in 7 Documents MSC: 65L10 Numerical solution of boundary value problems involving ordinary differential equations 34A45 Theoretical approximation of solutions to ordinary differential equations Citations:Zbl 1281.65101; Zbl 1206.65203; Zbl 1193.65148; Zbl 1134.34307; Zbl 1060.65078; Zbl 1159.65077; Zbl 1117.65115; Zbl 0881.65076; Zbl 0920.65049; Zbl 1238.65087 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Richards, G.; Sarma, P. R. R., Reduced order models for induction motors with two rotor circuits, IEEE Transactions on Energy Conversion, 9, 4, 673-678 (1994) · doi:10.1109/60.368342 [2] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability. Hydrodynamic and Hydromagnetic Stability, The International Series of Monographs on Physics (1961), Oxford, UK: Clarendon Press, Oxford, UK · Zbl 0142.44103 [3] Siddiqi, S. S.; Iftikhar, M., Solution of seventh order boundary value problems by variation of parameters method, Research Journal of Applied Sciences, Engineering and Technology, 5, 1, 176-179 (2013) [4] Liu, G. R.; Wu, T. Y., Differential quadrature solutions of eighth-order boundary-value differential equations, Journal of Computational and Applied Mathematics, 145, 1, 223-235 (2002) · Zbl 1001.65085 · doi:10.1016/S0377-0427(01)00577-5 [5] Siddiqi, S. S.; Akram, G., Solution of eight-order boundary value problems using the non-polynomial spline technique, International Journal of Computer Mathematics, 84, 3, 347-368 (2007) · Zbl 1117.65115 · doi:10.1080/00207160601177226 [6] Siddiqi, S. S.; Twizell, E. H., Spline solutions of linear eighth-order boundary-value problems, Computer Methods in Applied Mechanics and Engineering, 131, 3-4, 309-325 (1996) · Zbl 0881.65076 [7] Inc, M.; Evans, D. J., An efficient approach to approximate solutions of eighth-order boundary-value problems, International Journal of Computer Mathematics, 81, 6, 685-692 (2004) · Zbl 1060.65078 · doi:10.1080/0020716031000120809 [8] Golbabai, A.; Javidi, M., Application of homotopy perturbation method for solving eighth-order boundary value problems, Applied Mathematics and Computation, 191, 2, 334-346 (2007) · Zbl 1193.65148 · doi:10.1016/j.amc.2007.02.091 [9] Akram, G.; Rehman, H. U., Numerical solution of eighth order boundary value problems in reproducing Kernel space, Numerical Algorithms, 62, 3, 527-540 (2013) · Zbl 1281.65101 · doi:10.1007/s11075-012-9608-4 [10] Geng, F.; Li, X., Variational iteration method for solving tenth-order boundary value problems, Journal of Mathematical Sciences, 3, 2, 161-172 (2009) · Zbl 1206.65203 [11] Siddiqi, S. S.; Akram, G.; Zaheer, S., Solution of tenth order boundary value problems using variational iteration technique, European Journal of Scientific Research, 30, 3, 326-347 (2009) [12] Siddiqi, S. S.; Akram, G., Solutions of tenth-order boundary value problems using eleventh degree spline, Applied Mathematics and Computation, 185, 1, 115-127 (2007) · Zbl 1119.65363 · doi:10.1016/j.amc.2006.07.013 [13] Siddiqi, S. S.; Twizell, E. H., Spline solutions of linear tenth-order boundary-value problems, International Journal of Computer Mathematics, 68, 3-4, 345-362 (1998) · Zbl 0920.65049 · doi:10.1080/00207169808804701 [14] Lamnii, A.; Mraoui, H.; Sbibih, D.; Tijini, A.; Zidna, A., Spline solution of some linear boundary value problems, Applied Mathematics E-Notes, 8, 171-178 (2008) · Zbl 1159.65077 [15] Domairry, G.; Nadim, N., Assessment of homotopy analysis method and homotopy perturbation method in non-linear heat transfer equation, International Communications in Heat and Mass Transfer, 35, 1, 93-102 (2008) · doi:10.1016/j.icheatmasstransfer.2007.06.007 [16] Ziabakhsh, Z.; Domairry, G., Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation, 14, 4, 1284-1294 (2009) · doi:10.1016/j.cnsns.2007.12.011 [17] Domairry, G.; Fazeli, M., Application of homotopy analysis method to solve mhd jef-feryhamel flows in non-parallel walls, Communications in Nonlinear Science and Numerical Simulation, 14, 489-499 (2009) [18] Moghimi, S. M.; Domairry, G.; Soleimani, S.; Ghasemi, E.; Bararnia, H., Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls, Advances in Engineering Software, 42, 3, 108-113 (2011) · Zbl 1316.76078 · doi:10.1016/j.advengsoft.2010.12.007 [19] Farajeyan, K.; Maleki, N. R., Numerical solution of tenth-order boundary value problems in off step points, Journal of Basic and Applied Scientific Research, 2, 6, 6235-6244 (2012) [20] Khan, M.; Hussain, M., Application of Laplace decomposition method on semi-infinite domain, Numerical Algorithms, 56, 2, 211-218 (2011) · Zbl 1428.35366 · doi:10.1007/s11075-010-9382-0 [21] Khan, M.; Gondal, M. A., A reliable treatment of Abel’s second kind singular integral equations, Applied Mathematics Letters, 25, 11, 1666-1670 (2012) · Zbl 1253.65202 · doi:10.1016/j.aml.2012.01.034 [22] Khan, M.; Gondal, M. A.; Kumar, S., A new analytical solution procedure for nonlinear integral equations, Mathematical and Computer Modelling, 55, 7-8, 1892-1897 (2012) · Zbl 1255.45003 · doi:10.1016/j.mcm.2011.11.044 [23] Khan, M.; Gondal, M. A.; Karimi Vanani, S., On the coupling of homotopy perturbation and Laplace transformation for system of partial differential equations, Applied Mathematical Sciences, 6, 9-12, 467-478 (2012) · Zbl 1247.65136 [24] Nadeem, S.; Hussain, A.; Khan, M., HAM solutions for boundary layer flow in the region of the stagnation point towards a stretching sheet, Communications in Nonlinear Science and Numerical Simulation, 15, 3, 475-481 (2010) · Zbl 1221.65282 · doi:10.1016/j.cnsns.2009.04.037 [25] Shaban, M.; Kazem, S.; Rad, J. A., A modification of the homotopy analysis method based on chebyshev operational matrices, Mathematical and Computer Modelling, 57, 1227-1239 (2013) [26] Arqub, O. A.; El-Ajou, A., Solution of the fractional epidemic model by homotopy analysis method, Journal of King Saud University, 25, 73-781 (2013) [27] Russo, M.; Van Gorder, R. A., Control of error in the homotopy analysis of nonlinear Klein-Gordon initial value problems, Applied Mathematics and Computation, 219, 12, 6494-6509 (2013) · Zbl 1286.65139 · doi:10.1016/j.amc.2012.12.049 [28] Liao, S.-J., A kind of approximate solution technique which does not depend upon small parameters. II. An application in fluid mechanics, International Journal of Non-Linear Mechanics, 32, 5, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1 [29] Liao, S.-J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, 2 (2004), Boca Raton, Fla, USA: Chapman & Hall/CRC, Boca Raton, Fla, USA · Zbl 1051.76001 [30] Liao, S.-J., On the homotopy analysis method for nonlinear problems, Applied Mathematics and Computation, 147, 2, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7 [31] Liao, S.; Tan, Y., A general approach to obtain series solutions of nonlinear differential equations, Studies in Applied Mathematics, 119, 4, 297-354 (2007) · Zbl 1533.34017 · doi:10.1111/j.1467-9590.2007.00387.x [32] Siddiqi, S. S.; Akram, G.; Iftikhar, M., Solution of seventh order boundary value problem by differential transformation method, World Applied Sciences Journal, 16, 11, 1521-1526 (2012) [33] He, J.-H., The variational iteration method for eighth-order initial-boundary value problems, Physica Scripta, 76, 6, 680-682 (2007) · Zbl 1134.34307 · doi:10.1088/0031-8949/76/6/016 [34] Torvattanabun, M.; Koonprasert, S., Variational iteration method for solving eighth-order boundary value problems, Thai Journal of Mathematics, 8, 4, 121-129 (2010) · Zbl 1238.65087 [35] Kasi Viswanadham, K. N. S.; Raju, Y. S., Quintic B-spline collocation method for tenth order boundary value problems, International Journal of Computer Applications, 51, 15, 7-13 (2012) · Zbl 1396.65129 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.