×

A general iterative algorithm with strongly positive operators for strict pseudo-contractions. (English) Zbl 1483.47107

Summary: This paper deals with a new iterative algorithm \(\{x_n\}\) with a strongly positive operator \(A\) for a \(k\)-strict pseudo-contraction \(T\) and a non-self-Lipschitzian mapping \(S\) in Hilbert spaces. Under certain appropriate conditions, the sequence \(\{x_n\}\) converges strongly to a fixed point of \(T\), which solves some variational inequality. The results here improve and extend some recent related results.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moudafi, A., Viscosity approximation methods for fixed-points problems, Journal of Mathematical Analysis and Applications, 241, 1, 46-55 (2000) · Zbl 0957.47039 · doi:10.1006/jmaa.1999.6615
[2] Xu, H.-K., Viscosity approximation methods for nonexpansive mappings, Journal of Mathematical Analysis and Applications, 298, 1, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059
[3] Tian, M., A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Application A, 73, 3, 689-694 (2010) · Zbl 1192.47064 · doi:10.1016/j.na.2010.03.058
[4] Marino, G.; Xu, H.-K., A general iterative method for nonexpansive mappings in Hilbert spaces, Journal of Mathematical Analysis and Applications, 318, 1, 43-52 (2006) · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028
[5] Deutsch, F.; Yamada, I., Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numerical Functional Analysis and Optimization, 19, 1-2, 33-56 (1998) · Zbl 0913.47048 · doi:10.1080/01630569808816813
[6] Xu, H. K., An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications, 116, 3, 659-678 (2003) · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[7] Yamada, I.; Butnariu, D.; Censor, Y.; ReichS, S., The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, 8, 473-504 (2001), Amsterdam, The Netherland: North-Holland, Amsterdam, The Netherland · Zbl 1013.49005 · doi:10.1016/S1570-579X(01)80028-8
[8] Ceng, L.-C.; Guu, S.-M.; Yao, J.-C., A general composite iterative algorithm for nonexpansive mappings in Hilbert spaces, Computers & Mathematics with Applications, 61, 9, 2447-2455 (2011) · Zbl 1292.47042 · doi:10.1016/j.camwa.2011.02.025
[9] Wang, Y. H.; Xia, Y. H., Strong convergence for asymptotically pseudo-contractions with the demiclosedness principle in Banach spaces, Fixed Point Theory and Applications, 2012, article 45 (2012) · Zbl 1273.47087
[10] Song, Y. L.; Hu, H. Y.; Wang, Y. Q., Strong convergence of a new general iterative method for variational inequality problems in Hilbert spaces, Fixed Point Theory and Applications, 2012, article 46 (2012) · Zbl 1475.47074
[11] Xu, W.; Wang, Y. H., Strong convergence of the iterative methods for hierarchical fixed point problems of an infinite family strictly non-self pseudo-contractions, Abstract and Applied Analysis, 2012 (2012) · Zbl 1253.65091 · doi:10.1155/2012/457024
[12] Young, N., An Introduction to Hilbert Space, x+239 (1988), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0645.46024
[13] Yao, Y. H.; Noor, M. A.; Liou, Y. C., Strong convergence of a modified extragradient method to the miniumnorm solution of variational inequalities, Abstract and Applied Analysis, 2012 (2012) · Zbl 1232.49011 · doi:10.1155/2012/817436
[14] Xu, H. K.; Kim, T. H., Convergence of hybrid steepest-descent methods for variational inequalities, Journal of Optimization Theory and Applications, 119, 1, 185-201 (2003) · Zbl 1045.49018 · doi:10.1023/B:JOTA.0000005048.79379.b6
[15] Yao, Y.; Liou, Y.-C.; Kang, S. M., Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method, Computers & Mathematics with Applications, 59, 11, 3472-3480 (2010) · Zbl 1197.49008 · doi:10.1016/j.camwa.2010.03.036
[16] Browder, F. E.; Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, Journal of Mathematical Analysis and Applications, 20, 197-228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[17] Wang, Y.; Yang, L., Modified relaxed extragradient method for a general system of variational inequalities and nonexpansive mappings in Banach spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1246.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.