zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The time-fractional coupled-Korteweg-de-Vries equations. (English) Zbl 1291.35273
Summary: We put into practice a relatively new analytical technique, the homotopy decomposition method, for solving the nonlinear fractional coupled-Korteweg-de-Vries equations. Numerical solutions are given, and some properties exhibit reasonable dependence on the fractional-order derivatives’ values. The fractional derivatives are described in the Caputo sense. The reliability of HDM and the reduction in computations give HDM a wider applicability. In addition, the calculations involved in HDM are very simple and straightforward. It is demonstrated that HDM is a powerful and efficient tool for FPDEs. It was also demonstrated that HDM is more efficient than the adomian decomposition method (ADM), variational iteration method (VIM), homotopy analysis method (HAM), and homotopy perturbation method (HPM).

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35R11Fractional partial differential equations
WorldCat.org
Full Text: DOI
References:
[1] M. Kurulay, A. Secer, and M. A. Akinlar, “A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method,” Applied Mathematics & Information Sciences, vol. 7, no. 1, pp. 267-271, 2013.
[2] K. B. Oldham and J. Spanier, The Fractional Calculus, vol. 111 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1974. · Zbl 0292.26011
[3] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[4] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[5] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[6] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-II,” Geophysical Journal International, vol. 13, no. 5, pp. 529-539, 1967. · doi:10.1111/j.1365-246X.1967.tb02303.x
[7] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[8] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0943.82582 · doi:10.1007/BF01048101
[9] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0924.44003 · doi:10.1080/10652469308819017
[10] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2008. · Zbl 1221.70024 · doi:10.1016/j.cnsns.2007.05.017
[11] A. Atangana, “Numerical solution of space-time fractional derivative of groundwater flow equation,” in International Conference of Algebra and Applied Analysis, pp. 1-20, June 2012.
[12] R. Hirota and J. Satsuma, “Soliton solutions of a coupled Korteweg-de Vries equation,” Physics Letters A, vol. 85, no. 8-9, pp. 407-408, 1981. · doi:10.1016/0375-9601(81)90423-0
[13] Z. M. Odibat and S. Momani, “Application of variational iteration method to nonlinear differential equations of fractional order,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 1, pp. 27-34, 2006. · Zbl 05675858
[14] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[15] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[16] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993, translated from the 1987 Russian original. · Zbl 0818.26003
[17] G. Jumarie, “On the representation of fractional Brownian motion as an integral with respect to (dt)a,” Applied Mathematics Letters, vol. 18, no. 7, pp. 739-748, 2005. · Zbl 1082.60029 · doi:10.1016/j.aml.2004.05.014
[18] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367-1376, 2006. · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[19] A. Atangana and J. F. Botha, “Analytical solution of the groundwater flow equation obtained via homotopy decomposition method,” Journal of Earth Science & Climatic Change, vol. 3, no. 2, p. 115, 2012. · doi:10.4172/2157-7617.1000115
[20] M. Merdan and S. T. Mohyud-Din, “A new method for time-fractionel coupled-KDV equations with modified Riemann-Liouville derivative,” Studies in Nonlinear Science, vol. 2, no. 2, pp. 77-86, 2011.
[21] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran, and A. A. Mahmoud, “Time-fractional KdV equation: formulation and solution using variational methods,” Nonlinear Dynamics, vol. 65, no. 1-2, pp. 55-63, 2011. · Zbl 1234.35219 · doi:10.1007/s11071-010-9873-5
[22] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[23] M. Matinfar and M. Ghanbari, “The application of the modified variational iteration method on the generalized Fisher’s equation,” Journal of Applied Mathematics and Computing, vol. 31, no. 1-2, pp. 165-175, 2008. · Zbl 1216.65138 · doi:10.1007/s12190-008-0199-0
[24] Y. Tan and S. Abbasbandy, “Homotopy analysis method for quadratic Riccati differential equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 3, pp. 539-546, 2008. · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[25] J. Biazar, Solving system of integral equations by Adomian decomposition method [Ph.D. thesis], Teacher Training University, Iran, 2002. · Zbl 1012.65146
[26] A. Atangana, “New class of boundary value problems,” Information Sciences Letters, vol. 1, no. 2, pp. 67-76, 2012.