zbMATH — the first resource for mathematics

Équations exponentielles polynômes et suites récurrentes linéaires. (Exponential polynomial equations and linear recurrence sequences). (French) Zbl 0621.10014
Journées arithmétiques, Besançon/France 1985, Astérisque 147/148, 121-139 (1987).
[For the entire collection see Zbl 0605.00004.]
The main result of this paper is that common zeros in \({\mathbb{Z}}^ r\) of a finite family of exponential-polynomial functions (with complex coefficients) lie ”near” affine subgroups explicitly given (they belong to such subgroups if only exponential functions are involved). Applications to algebraic equations relating values of linear recurrence sequences are given. Unfortunately the proofs, based on a theorem of Schlickewei are not effective.
Reviewer: G.Christol

11D61 Exponential Diophantine equations
11B37 Recurrences