Wingberg, Kay Galois groups of number fields generated by torsion points of elliptic curves. (English) Zbl 0621.12011 Nagoya Math. J. 104, 43-53 (1986). Let \(F\) be an algebraic number field. Let \(p\neq 2\) be a prime, \(S_ p\) the set of all primes in \(F\) above \(p\), \(S\) a finite set of primes in \(F\), \(F_ S\) the maximal p-extension of \(F\) unramified outside \(S\), and \(F_{\infty}^ a\) \({\mathbb{Z}}_ p\)-extension in \(F_ S\). The main result in this article is a general theorem giving sufficient conditions for the Galois groups \(G(F_{S_ p}/F_{\infty})\), \(G(F_{S\cap S_ p}/F_{\infty})\), \(G(F_ S/F_{\infty})\), and \(G(F_{S\cup S_ p}/F_{\infty})\) to be free pro-p-groups. If \(T\supseteq S\), sufficient conditions are given for \(G(F_ T/F_ S)\) to be a free pro-p-product of certain inertia groups. This generalizes results of J. Neukirch [J. Reine Angew. Math. 259, 1-47 (1973; Zbl 0263.12006)] and O. Neumann [in Algebr. Number Fields, Proc. Symp. London math. Soc., Univ. Durham 1975, 625-647 (1977; Zbl 0393.12015)]. Reviewer: L.Olson Cited in 3 Documents MSC: 11R32 Galois theory 11R18 Cyclotomic extensions 14H52 Elliptic curves 11R34 Galois cohomology 11S15 Ramification and extension theory 14G25 Global ground fields in algebraic geometry Keywords:torsion points of elliptic curves; Iwasawa theory; Galois cohomology; maximal p-extension; \({bbfZ}_ p\)-extension; Galois groups; free pro-p- groups PDF BibTeX XML Cite \textit{K. Wingberg}, Nagoya Math. J. 104, 43--53 (1986; Zbl 0621.12011) Full Text: DOI References: [1] Composite Math 55 pp 333– (1985) [2] On p-closed number fields and an analogue of Riemann’s existence theorem pp 625– (1977) [3] J. reine angew. Math 259 pp 1– (1973) [4] DOI: 10.1007/BF01393198 · Zbl 0534.12009 · doi:10.1007/BF01393198 [5] DOI: 10.1007/BF01388840 · Zbl 0563.12008 · doi:10.1007/BF01388840 [6] Galois cohomology of algebraic number fields (1978) [7] Progress in Mathematics Vol. 35 (Birkhäuser) Arithmetic and Geometry I dedicated to I.R (1983) [8] DOI: 10.1007/BF01402975 · Zbl 0359.14009 · doi:10.1007/BF01402975 [9] DOI: 10.2307/1970784 · Zbl 0285.12008 · doi:10.2307/1970784 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.