zbMATH — the first resource for mathematics

A study of variation of mixed Hodge structure. (English) Zbl 0621.14007
By an admissible graded polarizable variation of mixed Hodge structure (g.p. VMHS) on a complex space X (on which a smooth Zariski open subset \(X^*\) is given) the author understands a g.p. VMHS whose restriction to any curve meeting \(X^*\) is admissible in the sense of J. Steenbrink and S. Zucker [Invent. Math. 80, 489-542 (1985)]. A study of admissible g.p. VMHS’ is made; especially it is proved that if admissibility holds outside a subspace of codimension 2 of X then it holds on the whole of X (provided X is smooth and \(X\setminus X^*\) is a divisor with normal crossings).
Reviewer: A.Buium

14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
Full Text: DOI
[1] E. Cattani and A. Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Inv. Math., 67 (1982), 101-115. · Zbl 0516.14005 · doi:10.1007/BF01393374 · eudml:142901
[2] E. Cattani, A. Kaplan and W. Schmid, 1. Degeneration of Hodge structures, preprint. 2. L2 and intersection cohomologies for a polarizable variation of Hodge structures, preprint. · Zbl 0611.14006
[3] P. Deligne, Theorie de Hodge I, II, III, Actes Congres Intern, math. 1970, 425-430; Publ. Math. I. H. E. S., 40 (1971), 5-58; 44 (1974), 5-77.
[4] A. Galligo, M. Granger and Ph. Maisonobe, D-modules et faisceaux pervers dont le support singulier est un croisement normal, to appear in Ann. Sci. EC. Norm. Sup. · Zbl 0572.32013
[5] M. Kashiwara, The asymptotic behavior of a variation of polarized Hodge structure, Publ. RIMS, Kyoto Univ., 21 (1985), 853-875. · Zbl 0594.14012 · doi:10.2977/prims/1195178935
[6] M. Kashiwara, and T. Kawai, 1 . The Poincare lemma for a variation of polarized Hodge structure, preprint RIMS- 540, the announcement is appeared in Proc. Japan Acad., 61, Ser. A (1985), 164-167. · Zbl 0576.14010 · doi:10.3792/pjaa.61.164
[7] W. Schmid, Variation of Hodge structure ; the singularities of the period mapping, Inv. Math., 22 (1973), 211-319. · Zbl 0278.14003 · doi:10.1007/BF01389674 · eudml:142246
[8] J. Steenbrink and S. Zucker, Variation of mixed Hodge structure I, Inv. Math,. 80 (1985), 485-542. · Zbl 0626.14007 · doi:10.1007/BF01388729 · eudml:143242
[9] S. Zucker, Variation of mixed Hodge structure II, Inv. Math., 80 (1985), 543-565. · Zbl 0615.14003 · doi:10.1007/BF01388730 · eudml:143243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.