×

zbMATH — the first resource for mathematics

Associative rings. (English) Zbl 0621.16001
Translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 22, 3–115 (Russian) (1984; Zbl 0564.16002).

MSC:
16-02 Research exposition (monographs, survey articles) pertaining to associative rings and algebras
16-XX Associative rings and algebras
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Sh. Abakarov, ?Identities of the algebra of upper triangular matrices,? in: Structural Properties of Algebraic Systems [in Russian], Nalchik (1981), pp. 3?8.
[2] A. Sh. Abakarov, ?Identities of the algebra of triangular matrices,? J. Sov. Math.,27, No. 4 (1984).
[3] M. Abish, ?On the Herstein property of matrix polynomials,? Sib. Mat. Zh.,18, No. 1, 212?215 (1977). · Zbl 0409.15011
[4] K. V. Agapitov, ?Epimorphic images of bounded prime Dedekind rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 5, 50?58 (1980). · Zbl 0461.16006
[5] A. Z. Anan’in, ?Locally finitely approximable and locally representable varieties,? Algebra Logika,16, No. 1, 3?23 (1977). · Zbl 0388.16015
[6] A. Z. Anan’in, ?Embedding of algebras into algebras of triangular matrices,? Mat. Sb.,108, No. 2, 168?186 (1979).
[7] A. Z. Anan’in, ?Local finiteness of certain algebras,? Algebra Logika,18, No. 1, 3?8 (1979). · Zbl 0449.16015
[8] A. Z. Anan’in and A. R. Kemer, ?Varieties of associative algebras whose lattices of subvarieties are distributive,? Sib. Mat. Zh.,17, No. 4, 723?730 (1976).
[9] A. V. Andrunakievich, ?Prime modules, prime one-sided ideals, and the Baer radical,? Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 12?17 (1976).
[10] A. V. Andrunakievich, ?Completely simple one-sided ideals,? Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 10?15 (1977).
[11] A. V. Andrunakievich, ?Idempotent lattices and the structure of rings,? Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 5?12 (1978).
[12] A. V. Andrunakievich, ?Special modules and special radicals,? Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 84?85 (1979).
[13] A. V. Andrunakievich, ?Prime one-sided ideals and special radicals of rings. I, II,? Bul. Akad. Shtiintse RSSMold., Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 5?14 (1979); No. 3, 5?11 (1979).
[14] A. V. Andrunakievich, ?Prime F-modules and the locally nilpotent radical,? Izv. MSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 79?80 (1981).
[15] A. V. Andrunakievich and V. A. Andrunakievich, ?One-sided ideals and radicals of rings,? Dokl. Akad. Nauk SSSR,259, No. 1, 11?15 (1981). · Zbl 0492.16010
[16] A. V. Andrunakievich and V. A. Andrunakievich, ?One-sided ideals and radicals of rings,? Algebra Logika,20, No. 5, 489?510 (1981). · Zbl 0506.16006
[17] A. V. Andrunakievich and V. A. Andrunakievich, ?Abelian-regular ideals of a ring,? Dokl. Akad. Nauk SSSR,263, No. 5, 1033?1036 (1982).
[18] A. V. Andrunakievich and V. A. Andrunakievich, ?On subdirect products,? Dokl. Akad. Nauk SSSR,269, No. 4, 777?780 (1983). · Zbl 0525.16012
[19] V. A. Andrunakievich, ?Completely simple one-sided ideals,? Bul. Akad. Shtiintse MoldSSR, Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 10?15 (1977).
[20] V. A. Andrunakievich, ?Completely prime ideals of a ring,? Mat. Sb.,121, No. 3, 291?296 (1983).
[21] V. A. Andrunakievich and A. V. Andrunakievich, ?Strongly modular ideals of a ring,? Dokl. Akad. Nauk SSSR,257, No. 1, 11?14 (1981).
[22] V. A. Andrunakievich and V. I. Arnautov, ?Weakly Boolean topological rings,? Mat. Issled., No. 44, 3?23 (1977).
[23] V. A. Andrunakievich, V. I. Arnautov, I. M. Goyan, and Yu. M. Ryabukhin, Associative rings,? Itogi Nauki Tekh., Ser. Alg. Topol. Geom.,16, 91?190 (1978).
[24] V. A. Andrunakievich, V. I. Arnautov, and Yu. M. Ryabukhin, ?Rings,? J. Sov. Math.,14, No. 1 (1980).
[25] V. A. Andrunakievich, K. K. Krachilov, and Yu. M. Ryabukhin, ?Lattice-complementary torsions in algebras over a Noetherian integral domain,? Dokl. Akad. Nauk SSSR,242, No. 5, 985?988 (1978). · Zbl 0442.16007
[26] V. A. Andrunakievich and K. K. Krachilov, ?Lattice-complementary torsions in algebras over a Noetherian integral domain,? Mat. Sb.,109, No. 1, 3?11 (1979). · Zbl 0409.16009
[27] V. A. Andrunakievich and Yu. M. Ryabukhin, ?Complementary and dual torsions,? Dokl. Akad. Nauk SSSR,238, No. 4, 769?772 (1978). · Zbl 0394.16005
[28] V. A. Andrunakievich and Yu. M. Ryabukhin, ?Complementary and dual torsions,? Trudy Mat. Inst. im. V. A. Steklov.,148, 16?26 (1978). · Zbl 0394.16005
[29] V. A. Andrunakievich and Yu. M. Ryabukhin, Radicals of Algebras and Lattice Theory [in Russian], Nauka, Moscow (1979). · Zbl 0507.16009
[30] V. G. Antipkin and V. P. Elimarov, ?Rings of order p3,? Sib. Mat. Zh.,23, No. 4, 9?18 (1982).
[31] O. K. Babkov, ?Algebraic extensions of rings and rings of quotients,? Algebra Logika,19, No. 1, 5?22 (1980). · Zbl 0466.16004
[32] M. I. Badalov, ?Varieties of associative algebras,? Algebra Logika,18, No. 4, 391?397 (1974).
[33] Yu. A. Bakhurin, A. M. Slin’ko, and I. P. Shestakov, ?Nonassociative rings,? J. Sov. Math.,18, No. 2 (1982).
[34] K. I. Beidar, ?The ring of invariants under the action of a finite group of automorphisms of a ring,? in: All-Union Algebra Symposium, Gomel (1975), p. 279.
[35] K. I. Beidar, ?Rings with generalized identities,? in: Third All-Union Symposium on the Theory of Rings, Modules, and Algebras, Tartu (1976), p. 12.
[36] K. I. Beidar, ?The ring of invariants under the Action of a finite group of automorphisms of a ring,? Usp. Mat. Nauk,32, No. 1, 159?160 (1977). · Zbl 0344.16024
[37] K. I. Beidar, ?On the structure of the T-ideal of generalized identities of a semiprime ring with a strong identity,? in: Fourteenth All-Union Algebra Conference, Part 2, Novosibirsk (1977), pp. 8?9.
[38] K. I. Beidar, ?Semiprime rings with a generalized identity,? Usp. Mat. Nauk,32, No. 4, 249?250 (1977). · Zbl 0363.16014
[39] K. I. Beidar, ?Rings with generalized identities. I, II, III, IV,? Vest. Mosk. Univ. Mat. Mekh., No. 2, 19?26 (1977); No. 3, 30?37 (1977); No. 4, 66?73 (1978); No. 4, 3?6 (1980).
[40] K. I. Beidar, ?Associative rings and finite groups of automorphisms,? Trudy Seminar. im. I. G. Petrovskogo Mosk. Gos. Univ., No. 4, 33?44 (1978).
[41] K. I. Beidar, ?Rings of quotients of semiprime rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 5, 36?43 (1978). · Zbl 0403.16003
[42] K. I. Beidar, ?On the T-nilpotency of certain rings,? in: Fifteenth All-Union Algebra Conference, Part 2, Krasnoyarsk (1979), p. 16.
[43] K. I. Beidar, ?Radicals of finitely generated algebras,? Usp. Mat. Nauk,36, No. 6, 203?204 (1981). · Zbl 0501.16011
[44] K. I. Beidar, ?Idempotents in rings with a polynomial identity,? Comment. Math. Univ. Carol.,22, No. 4, 755?759 (1981). · Zbl 0506.16012
[45] K. I. Beidar, ?Matrix representability of algebras of finite type,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 6, 108 (1982).
[46] K. I. Beidar, ?Atoms in the lattice of radicals,? in: Seventeenth All-Union Algebra Conference, Part 2, Minsk (1983), p. 18.
[47] K. I. Beidar and A. V. Mikhalev, ?The orthogonal completeness method in the theory of rings,? Vest. Mosk. Gos. Univ. Math. Mekh., No. 6, 99 (1979).
[48] K. I. Beidar and A. V. Mikhalev, ?Orthogonal completeness and its application in the theory of rings,? in: Fifteenth All-Union Algebra Conference, Part 2, Krasnoyarsk (1979), p. 17.
[49] K. I. Beidar and A. V. Mikhalev, ?Orthogonal completeness and rings of bounded index of nilpotency,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 3, 78 (1981).
[50] K. I. Beidar and V. D. Tén, ?Local finiteness of certain PI-algebras,? Sib. Mat. Zh.,18, No. 4, 934?938 (1977).
[51] V. P. Belkin, ?Quasiidentities of finite rings and lattices,? Algebra Logika,17, No. 3, 247?259 (1978). · Zbl 0428.16023
[52] I. I. Benediktovich and A. E. Zalesskii, ?Almost standard identities of matrix algebras,? Dokl. Akad. Nauk BSSR,23, No. 3, 201?204 (1979). · Zbl 0426.16016
[53] L. A. Bokut’, ?Some questions in the theory of rings,? Serdika. B?lg. Mat. Spisanie,3, No. 4, 299?308 (1977).
[54] L. A. Bokut’, ?Algorithmic problems and embedding theorems: some open questions for rings, groups, and semigroups,? Izv. Vuzov. Mat., No. 11, 3?11 (1982). · Zbl 0513.17001
[55] L. A. Bokut’, K. A. Zhevlakov, and E. N. Kuz’min, ?Ring theory,? in: Algebra. Topology. Geometry (Itogi Nauki) [in Russian], VINITI Akad. Nauk SSSR, Moscow (1970), pp. 9?56.
[56] L. A. Bokut’ and K. A. Zhevlakov, ?Rings. I?III,? Preprint, Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1973).
[57] K. N. Bui, ?On large varieties,? in: General Algebra and Discrete Geometry, Mathematical Sciences [in Russian], Kishinev (1980), pp. 10?15.
[58] V. D. Burkov, ?Derivations of polynomial rings,? Moscow State University (1980) (VINITI No. 1883-80).
[59] V. D. Burkov, ?Derivations of polynomial rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 51?55 (1981). · Zbl 0466.16002
[60] A. I. Valitskas, ?Absence of a finite basis of quasiidentities for quasivarieties of rings embeddable in radical rings,? Algebra Logika,21, No. 1, 13?36 (1982). · Zbl 0528.16004
[61] B. M. Vechtomov, ?Pure ideals of rings of continuous functions,? in: Modern Algebra [in Russian], Leningrad (1978), pp. 29?37.
[62] A. B. Vodyanyuk, ?Coatoms in lattices of radicals of algebras of bounded dimension,? Mat. Issled., No. 62, 18?37 (1981).
[63] I. B. Volichenko, ?The T-ideal generated by the [x1, x2, x3, x4],? Preprint, Institute of Mathematics, Academy of Sciences of the BSSR, No. 22 (54) (1978).
[64] I. B. Volichsnko and A. B. Zalesskii, ?Characterization of certain T-ideals from the point of view of the representation theory of symmetric groups,? Preprint, Institute of Mathematics, Academy of Sciences of the BSSR, No. 10 (66) (1979).
[65] M. V. Volkov, ?On the finite basic property for varieties of rings of finite index,? Mat. Zap. Ural. Univ.,10, No. 3, 26?32 (1977). · Zbl 0437.16010
[66] M. V. Volkov, ?Lattices of varieties of algebras,? Mat. Sb.,109, No. 1, 60?79 (1979).
[67] M. V. Volkov, ?Periodic varieties of associative rings,? Izv. Vuzov. Mat., No. 8, 3?13 (1979). · Zbl 0476.16016
[68] M. V. Volkov, ?Varieties of associative rings with restrictions on the lattices of subvarieties,? Ural University, Sverdlovsk (1979).
[69] M. V. Volkov, ?Finiteness of a basis of identities of certain associative rings,? Sib. Mat. Zh.,22, No. 4, 79?87 (1981).
[70] M. V. Volkov, ?Lattices of varieties of nilpotent rings,? Mat. Zap. Ural. Univ.,12, No. 3, 19?34 (1981). · Zbl 0494.17003
[71] M. V. Volkov, ?On the finite basis property for varieties of rings of finite index,? in: Algebraic Systems and Their Varieties [in Russian], Sverdlovsk (1982), pp. 3?6. · Zbl 0527.17007
[72] M. V. Volkov, ?Varieties of associative rings with the amalgam embeddability property,? Mat. Zametki,33, No, 1, 3?13 (1983). · Zbl 0539.16013
[73] Sixteenth All-Union Algebra Conference, September 22?25, 1981, Abstracts of Reports, Parts 1, 2, Leningrad (1981).
[74] Seventeenth All-Union Algebra Conference, Minsk, September 14?17, 1983, Abstracts of Reports, Parts 1, 2, Institute of Mathematics, Minsk (1983).
[75] Fourth All-Union Symposium on the Theory of Rings, Algebras, and Modules, Institute of Mathematics and Computation Center, Academy of Sciences of the MoldSSR, Kishinev (1980).
[76] Fifth All-Union Symposium on the Theory of Rings, Algebras, and Modules, Novosibirsk, September 21?23, 1982, Abstracts of Reports, Institute of Mathematics, Novosibirsk (1982).
[77] T. V. Gateva, ?On the complexity of PI-enveloping algebras for Lie algebras,? Moscow State University (1979) (VINITI No. 1221-80).
[78] T. V. Gateva, ?On the complexity of the variety generated by the tensor product of algebras,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 47?50 (1980). · Zbl 0456.16020
[79] T. V. Gateva, ?Complexity of a product of varieties of associative algebras,? Usp. Mat. Nauk,36, No. 1, 203?232 (1981). · Zbl 0478.16019
[80] T. V. Gateva, ?Estimate of the complexity of the variety generated by the tensor product of algebras,? Dokl. Bolg. Akad. Nauk,35, No. 12, 1623?1626 (1982).
[81] G. K. Genov, ?The Specht property of certain varieties of associative algebras over a field of characteristic zero,? Dokl. Bolg. Akad. Nauk,29, No. 7, 939?941 (1976). · Zbl 0358.16013
[82] G. K. Genov, ?A basis of identities of the algebra of third-order matrices over a finite field,? Algebra Logika,20, No. 4, 365?388 (1981). · Zbl 0493.16012
[83] G. K. Genov, ?Some Spechtian varieties of associative algebras,? Pliska B?lg. Mat. Stud.,2, 30?40 (1983).
[84] G. K. Genov and P. N. Siderov, ?A basis of identities of the algebra of fourth-order matrices over a finite field,? Serdika. B?lg. Mat. Spisanie,8, No. 3, 313?323 (1982). · Zbl 0515.16005
[85] G. K. Genov and P. N. Siderov, ?A basis of identities of the algebra of fourth-order matrices over a finite field,? Serdika. B?lg. Mat. Spisanie,8, No. 4, 351?336 (1982). · Zbl 0515.16005
[86] V. N. Gerasimov, ?Distributive lattices of subspaces and the equality problem for algebras with one relation,? Algebra Logika,15, No. 4, 384?435 (1976). · Zbl 0372.08001
[87] I. Z. Golubchik, ?The group of units of prime Goldie rings,? Usp. Mat. Nauk,33, No. 5, 179 (1978). · Zbl 0415.16007
[88] I. Z. Golubchik and V. T. Markov, ?Localization dimension of PI-rings,? Trudy Seminar. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 6, 39?46 (1981).
[89] I. Z. Golubchik and A. V. Mikhalev, ?Varieties of algebras with a semigroup identity,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 8?11 (1982). · Zbl 0502.16014
[90] R. Gonchigdorzh, ?Varieties of associative algebras in which the product of subvarieties is distributive over intersection,? Sib. Mat. Zh.,18, No. 6, 1296?1302 (1977).
[91] R. Gonchigdorzh, ?Varieties of associative algebras with a U distributive product of subvarieties,? Sib. Mat. Zh.,20, No. 3, 529?538 (1979). · Zbl 0415.16016
[92] R. Gonchigdorzh, ?Varieties of associative algebras over an infinite field of characteristic p>2 with a ? and ? distributive product of subvarieties,? Sib. Mat. Zh.,23, No. 3, 48?54 (1982). · Zbl 0501.16018
[93] R. Gonchigdorzh and Yu. N. Mal’tsev, ?On a variety of associative algebras for which the groupoid of subvarieties is a commutative group,? Sib. Mat. Zh.,23, No. 2, 31?38 (1982). · Zbl 0501.16018
[94] I. M. Goyan and I. D. Kitoroagé, ?Infinite intersections of primary ideals,? Mat. Issled., No. 44, 49?53 (1977). · Zbl 0418.16019
[95] A. G. Grigoryan, ?Normal radicals of preadditive precategories,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 4, 36?39 (1978).
[96] I. L. Guseva, ?Semiprime algebras with a one-sided ideal satisfying a polynomial identity,? Izv. Vuzov Mat., No. 4, 3?13 (1979). · Zbl 0435.16009
[97] I. L. Guseva, ?The tensor product of algebras satisfying generalized identities,? Editorial Board, Siberian Mathematical Journal, Siberian Branch, Academy of Sciences of the SSSR, Novosibirsk (1979) (VINITI No. 4109).
[98] I. L. Guseva, ?Prime rings containing a one-sided ideal satisfying a polynomial identity,? in: Selected Questions in Mathematics, Physics, and Function Theory [in Russian], Moscow(1979), pp. 23?27.
[99] Dnestr Notebook. Unsolved Problems in the Theory of Fields and Modules [in Russian], 3rd Edition, Institute of Mathematics, Novosibirsk (1982).
[100] O. I. Domanov, ?A prime regular ring that is not primitive,? Usp. Mat. Nauk,32, No. 6, 219?220 (1977).
[101] V. S. Drenski, ?Lattices of varieties of associative algebras,? Serdika. B?lg. Mat. Spisanie,8, No. 1, 20?31 (1982).
[102] V. S. Drobotenko, ?Is there a generalization of Hua’s theorem on automorphisms of division rings?,? in: Materials of the Thirty-Third Concluding Scientific Conference of the Professional and Teaching Faculty of Uzhgorod University, Mathematics Section, Uzhgorod (1981), pp. 185?190.
[103] M. M. Drogomizhs’ka, ?On an elementary divisor ring,? Visnik L’viv. Politekh. Inst., No. 119, 39?41, 185 (1977).
[104] N. I. Dubrovin, ?Chain domains,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 51?54 (1980).
[105] N. I. Dubrovin, ?On principal right ideal rings,? Izv. Vuzov. Mat., No. 2, 30?37 (1981).
[106] N. I. Dubrovin, ?On chain rings,? Usp. Mat. Nauk,37, No. 4, 139?140 (1982).
[107] N. I. Dubrovin, ?Projective limit of rings with elementary divisors,? Mat. Sb.,119, No. 81, 88?95 (1982).
[108] N. I. Dubrovin, ?Noncommutative valuation rings,? Trudy Mosk. Mat. Obshch.,45, 265?280 (1982).
[109] N. I. Dubrovin, ?Example of a prime chain ring with nilpotent elements,? Mat. Sb.,120, No, 3, 441?447 (1983). · Zbl 0517.16002
[110] S. S. Dumitrashku, ?Topological algebras and locally bicompact spaces,? Tiraspol Pedagogic Institute, Tiraspol (1982) (VINITI No. 5076-82).
[111] K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Rings That Are Nearly Associative [in Russian], Nauka, Moscow (1978). · Zbl 0445.17001
[112] L. B. Zagorin, ?Commutative nilpotent algebras of real-quaternion matrices,? Rybinsk Aviation Technology Institute, Rybinsk (1981) (VINITI No. 500-82).
[113] L. B. Zagorin and A. M. Safronov, ?Commutative nilpotent algebras of lower triangular matrices,? Rybinsk Aviation Technology Institute, Rybinsk (1981) (VINITI No. 5744-81).
[114] A. E. Zalesskii and O. M. Neroslavskii, ?There exist simple Noetherian rings with mero-divisors but with no idempotents,? Commun. Algebra,5, No. 3, 231?244 (1977). · Zbl 0352.16011
[115] A. E. Zalesskii and M. B. Smirnov, ?Associative rings satisfying a Lie solvability identity,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 2, 15?20 (1982).
[116] A. P. Zamyatin, ?Prevarieties of associative rings whose elementary theory is decidable,? Sib. Mat. Zh.,19, No. 6, 1266?1282 (1978). · Zbl 0427.03019
[117] E. N. Zakharova, ?Radically semisimple classes and strong J-semisimplicity of locally finite PI-algebras,? Mat. Issled., No. 49, 68?79 (1979). · Zbl 0419.16003
[118] E. N. Zakharova, ?Almost commutative nilpotent varieties of algebras,? Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 1, 3?10 (1982).
[119] E. N. Zakharova, ?Finite-dimensional algebras over a Noetherian integral domain,? Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 3?8 (1982).
[120] E. N. Zakharova, ?Locally finite-dimensional and locally finite varieties of algebras over a Noetherian integral domain,? Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 11?16 (1982).
[121] B. N. Zakharova, ?Radicals of reduced free locally finite algebras,? Institute of Mathematics and Computation Center, Academy of Sciences of the Moldavian SSR, Kishinev (1983) (VINITI No. 2033-83).
[122] B. N. Zakharova, ?Radically semisimple classes and radicals of reduced free algebras,? Institute of Mathematics and Computation Center, Academy of Sciences of the Moldavian SSR, Kishinev (1981) (VINITI No. 5367-83).
[123] B. N. Zakharova, ?Varieties of associative algebras with the maximal condition for subvarieties,? Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 10?18 (1983).
[124] B. I. Zel’manov, ?Radical extensions of PI-algebras,? Sib. Mat. Zh.,19, No. 6, 1392?1394 (1978).
[125] B. I. Zeltmanov, ?An example of a finitely generated prime ring,? Sib. Mat. Zh.,20, No. 2, 423 (1979).
[126] M. I. Kabenyuk and É. É. Fetisova, ?Finite commutative groups that are groups of units of commutative rings,? in: Questions in Group Theory [in Russian], Kemerovo (1980), pp. 2?8.
[127] U. Kal’yulaid, ?Remark on a basis of identities of the algebra of upper triangular matrices,? in: Materials of the Conference on Methods of Algebra and Functional Analysis in the Investigation of Families of Operators, 1978, Tartu (1978), pp. 105?107.
[128] A. R. Kemer, ?The Specht property of T-ideals with power growth of codimensions,? Sib. Mat. Zh.,19, No. 1, 54?69 (1978). · Zbl 0411.16014
[129] A. R. Kemer, ?Remark on the standard identity,? Mat. Zametki,23, No. 5, 753?757 (1978). · Zbl 0436.16013
[130] A. R. Kemer, ?On nonmatrix varieties,? Algebra Logika,19, 255?283 (1980). · Zbl 0467.16025
[131] A. R. Kemer, ?Capelli identities and nilpotency of the radical of a finitely generated PI-algebra,? Dokl. Akad. Nauk SSSR,255, No. 4, 793?797 (1980).
[132] A. R. Kemer, ?Decomposition of varieties,? Algebra Logika,20, No. 4, 395?414 (1981). · Zbl 0496.16019
[133] B. Sh. Kerer, ?Factorization of a binomial in a skew polynomial ring,? Kharkov Univ. (1979) (VINITI No. 1523-79).
[134] A. A. Kirillov, M. L. Kontsevich, and A. I. Molev, ?An algebra of intermediate growth,? Preprint, Institute of Applied Mathematics, Academy of Sciences of the USSR, No. 39 (1983). · Zbl 0684.17008
[135] M. V. Kolmagorova, ?Adjoint groups of nilpotent rings,? in: Questions in Group Theory [in Russian], Kemerovo (1980), pp. 14?21.
[136] A. T. Kolotov, ?Free subalgebras of free associative algebras,? Sib. Mat. Zh.,19, No. 2, 328?335 (1978). · Zbl 0409.16003
[137] A. T. Kolotov, ?Algebras and semigroups with quadratic growth functions,? Algebra Logika,19, No. 6, 659?668 (1980). · Zbl 0485.16013
[138] A. T. Kolotov, ?Aperiodic sequences and growth functions of algebras,? Algebra Logika,20, No. 2, 138?154 (1981). · Zbl 0535.16020
[139] A. T. Kolotv, ?An upper bound for the height of a finitely generated algebra with identical relations,? Sib. Mat. Zh.,23, No. 1, 187?189 (1982).
[140] B. I. Kompantseva, ?The absolute Jacobson radical of a mixed Abelian group of torsion-free rank one,? Moscow State Pedagogic Institute, Moscow (1982) (VINITI No. 548?83).
[141] B. I. Kompantseva, ?Rings on algebraically compact Abelian groups,? Moscow State Pedagogic Institute (1982) (VINITI No. 549-83).
[142] S. S. Korobkov, ?Projections of torsion-free nilpotent associative rings,? Mat. Zap. Ural. Univ.,11, No. 1, 41?53 (1978). · Zbl 0434.16006
[143] S. S. Korobkov, ?Projections of free nilpotent associative rings,? Mat. Zap. Ural. Univ.,11, No. 3, 62?70 (1979). · Zbl 0434.16007
[144] S. S. Korobkov, ?Lattice isomorphisms of associative nilalgebras,? Sverdlovsk State Pedagogic Institute (1980) (VINITI No. 1519-80).
[145] S. S. Korobkov, ?Projections of nilpotent commutative associative algebras,? Sverdlovsk State Pedagogic Institute (1980) (VINITI No. 1520-80).
[146] S. S. Korobkov, ?Projections of periodic nilrings,? Izv. Vuzov. Mat., No. 7, 30?38 (1980). · Zbl 0465.16003
[147] S. S. Korobkov, ?Projections of mixed associative nilrings,? Sverdlovsk State Pedagogic Institute (1981) (VINITI No. 2704-81).
[148] S. S. Korobkov, ?Projections of associative nilrings,? Izv. Vuzov. Mat., No. 4, 80?82 (1981).
[149] S. S. Korobkov and P. A. Freidman, ?Projections of torsion-free nilrings,? Mat. Zap. Ural. Univ.,10, No. 3, 106?126 (1977).
[150] E. Kh. Kostyukovich, ?Another proof of a theorem on nilpotency of commutative algebras,? in: Investigations in Mathematics [in Russian], Grodno (1979), pp. 166?172.
[151] K. K. Krachilov, ?Complementability in lattices of torsions,? Mat. Issled., No. 62, 76?88 (1981). · Zbl 0462.16018
[152] K. K. Krachilov, ?Complementability in lattices of torsions. II,? Mat. Issled., No. 62, 89?111 (1981). · Zbl 0462.16019
[153] N. Ya. Krupkin, ?On a problem in the theory of PI-algebras,? in: Investigations in Modern Algebra and Geometry. Mathematical Sciences [in Russian], Kishinev (1983), pp. 76?79.
[154] S. I. Kublanovskii, ?Locally finitely approximable and locally representable varieties of associative rings and algebras,? Leningrad State Pedagogic Institute (1982) (VINITI No. 6143-82).
[155] G. P. Kukin, ?The equality problem and free products of Lie algebras and associative algebras,? Sib. Mat. Zh.,24, No. 2, 85?96 (1983). · Zbl 0519.17009
[156] G. Ch. Kurinnoi, ?Arithmetic algebras with a Stone lattice of congruences,? in: Theoretical and Applied Questions in Differential Equations and Algebra [in Russian], Kiev (1978), pp. 136?138.
[157] V. V. Kursov, ?Commutators of the multiplicative group of a finite-dimensional central division ring,? Dokl. Akad. Nauk BSSR,26, No. 2, 101?103 (1982). · Zbl 0498.16017
[158] A. Kh. Kushkulei, ?Some remarks on verbal ideals,? Latv. Mat. Ezhegodnik, No. 24, 223?228 (1980).
[159] V. N. Latyshev, ?On the complexity of nonmatrix varieties of associative algebras. I,? Algebra Logika,16, No. 2, 149?183 (1977). · Zbl 0395.16010
[160] V. N. Latyshev, ?On the complexity of nonmatrix varieties of associative algebras. II,? Algebra Logika,16, No. 2, 184?199 (1977). · Zbl 0395.16011
[161] V. N. Latyshev, ?The finite basis property for the identities of certain rings,? Usp. Mat. Nauk,32, No. 4, 259?260 (1977). · Zbl 0359.16008
[162] V. N. Latyshev, ?Partially ordered sets and nonmatrix identities of associative algebras,? Algebra Logika,15, No. 1, 53?70 (1976). · Zbl 0358.16012
[163] V. N. Latyshev, ?Nonmatrix varieties of associative algebras,? Mat. Zametki,27, No. 1, 147?156 (1980). · Zbl 0427.16017
[164] V. N. Latyshev, ?A universal derivation of a free algebra,? in: Algebra [in Russian], Moscow (1980), pp. 50?52.
[165] V. N. Latyshev, ?Stable ideals of identities,? Algebra Logika,20, No. 5, 563?570 (1981). · Zbl 0499.16012
[166] V. N. Latyshev, ?Commutativity of PI-algebras of polynomial type,? in: Collection of Papers in Honor of the 90th Anniversary of the Birthday of O. Yu. Shmidt [in Russian], Moscow (1982), pp. 86?94.
[167] A. B. Levin, ?Type dimension of inverse difference vector spaces and difference algebras,? Moscow State University, Mechanics-Mathematics Dept., Moscow (1982) (VINITI No. 1606 -82).
[168] D. V. Levchenko, ?Finite basis property of the identities with involution of a secondorder matrix algebra,? Serdika. B?lg. Spisanie,8, No. 1, 42?56 (1982).
[169] I. V. L’vov, ?An application of the Chevalley-Warning theorem in ring theory,? Mat. Zap. Ural. Univ.,11, No. 1, 110?124 (1978).
[170] I. V. Levov, ?Representation of nilpotent algebras by matrices,? Sib. Mat. Zh.,21, No. 5, 158?161 (1980).
[171] I. V. L’vov and V. K. Kharchenko, ?Normal elements of the algebra of general matrices are central,? Sib. Mat. Zh.,23, No. 1, 193?195 (1982).
[172] V. A. Lyatté, ?Isomorphism of the lattices of ideals of finite-dimensional algebras,? Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 47?51 (1980).
[173] Yu. N. Mal’tsev, ?Almost commutative varieties of associative rings,? Sib. Mat. Zh.,17, No. 5, 1086?1096 (1976).
[174] Yu. N. Mal’tsev, ?Varieties of associative algebras,? Algebra Logika,15, No. 5, 579?584 (1976). · Zbl 0385.16008
[175] Yu. N. Mal’tsev, ?On a question of K. A. Zhevlakov,? Sib. Mat. Zh.,19, No. 2, 471 (1978). · Zbl 0409.16016
[176] Yu. N. Mal’tsev, ?Some examples of varieties of associative rings,? Algebra Logika,19, No. 6, 669?675 (1980). · Zbl 0483.16011
[177] Yu. N. Mal’tsev, ?Identities of matrix rings,? Sib. Mat. Zh.,22, No. 3, 213?214 (1981).
[178] Yu. N. Mal’tsev, ?On critical algebras,? Algebra Logika,20, No. 2, 155?164 (1981). · Zbl 0497.16006
[179] Yu. N. Malt’sev, ?On the structure of critical rings,? Sib. Mat. Zh.,23, No. 1, 65?69 (1982). · Zbl 0585.76150
[180] Yu. N. Mal’tsev, ?Almost Engelian, locally finite varieties of associative rings,? Izv. Vuzov. Mat., No. 11, 41?42 (1982).
[181] Yu. N. Mal’tsev, ?On critical rings,? Usp. Mat. Nauk,38, No. 2, 209?210 (1983).
[182] Yu. N. Mal’tsev, ?Varieties of algebras whose critical algebras are basic,? Sib. Mat. Zh.,24, No. 6, 96?101 (1983).
[183] Yu. N. Mal’tsev and E. N. Kuz’min, ?A basis of identities of the second-order matrix algebra over a finite field,? Algebra Logika,17, No. 1, 28?32 (1978). · Zbl 0395.16014
[184] V. T. Markov, ?Affine rings,? in: Eleventh All-Union Algebra Colloquium, Abstracts of Communications and Reports, Kishinev (1971), pp. 350?351.
[185] V. T. Markov, ?Systems of generators of T-ideals of finitely generated free algebras,? Algebra Logika,18, No. 5, 587?598 (1978).
[186] V. T. Markov, ?Some examples of finitely generated algebras,? Usp. Mat. Nauk,36, No. 5, 185?186 (1981). · Zbl 0501.16012
[187] V. T. Markov, ?On B-rings with a polynomial identity,? Trudy Seminar. im. I. G. Petrovskogo, Mosk. Gos. Univ., No. 7, 232?238 (1981).
[188] V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, ?Modules,? J. Sov. Math,.23, No. 6 (1983).
[189] V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, and A. A. Tuganbaev, ?Endomorphism rings of modules and lattices of submodules,? J. Sov. Math.,31, No. 3 (1985). · Zbl 0574.16019
[190] I. I. Mel’nik and O. K. Shilovskaya, ?Effective shifts,? Kherson State Pedagogic Institute (1980) (VINITI No. 2988-80).
[191] A. S. Merkur’ev, ?A seven-term sequence in the Galois theory of rings,? J. Sov. Math.,37, No. 2 (1987).
[192] A. S. Merkur’ev and A. A. Suslin, ?The K-cohomology of Severi-Brauer varieties and the norm residue homomorphism,? Izv. Akad. Nauk SSSR, Ser. Mat.,46, No. 5, 1011?1061 (1982).
[193] A. V. Mikhalev, ?Endomorphism rings of modules and lattices of submodules,? J. Sov. Math.,5, No. 6 (1976). · Zbl 0375.16001
[194] A. V. Mikhalev and L. A. Skornyakov, ?Modules,? in: Algebra. Topology. Geometry, 1968 (Itogi Nauki) [in Russian], VINITI Akad. Nauk SSSR, Moscow (1970), pp. 57?100. · Zbl 0238.16003
[195] A. V. Mikhalev and L. A. Skornyakov, ?Modules. I?IV,? Preprint, Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1973).
[196] M. Miyanishi, ?Polynomial rings and related questions,? Sugaku,31, No. 2, 97?109.
[197] N. A. Nachev, ?Polynomial identities in incidence algebras,? Usp. Mat. Nauk,32, No. 6, 233?234 (1977).
[198] A. A. Nechaev, ?A basis of generalized identities of a finite commutative principal ideal ring,? Algebra Logika,18, No. 2, 186?193 (1979). · Zbl 0448.13019
[199] A. A. Nechaev, ?Polynomial transformations of finite commutative local principal ideal rings,? Mat. Zametki,27, No. 6, 885?897 (1980).
[200] A. A. Nechaev, ?A description of the finite critical principal ideal rings,? Usp. Mat. Nauk,37, No. 5, 193?194 (1982).
[201] S. A. Pikhtil’kov, ?On a variety generated by n-dimensional algebras,? Tula Polytechnic Institute (1980) (VINITI No. 1213-80).
[202] S. A. Pikhtil’kov, ?A central polynomial of a tensor product,? in: Some Questions on Differential Equations in the Solution of Applied Problems [in Russian], Tula (1980), pp. 47?54.
[203] S. V. Polin, ?Identities of the algebra of triangular matrices,? Sib. Mat. Zh.,21, No. 4, 206?215 (1980).
[204] A. P. Popov, ?On the groupoid of varieties of associative algebras,? Dokl. Bolg. Akad. Nauk,30, No. 7, 951?953 (1977).
[205] A. P. Popov, ?Some properties of the multiplication of varieties of associative algebras,? Pliska. B?lg. Mat. Stud.,,2, 95?98 (1981).
[206] A. P. Popov, ?The Spechtian property of certain varieties of associative algebras,? Pliska. B?lg. Mat. Stud.,2, 41?53 (1981).
[207] A. P. Popov, ?Identities of the tensor square of Grassmann algebras,? Algebra Logika,21, No, 4, 442?471 (1982). · Zbl 0521.16014
[208] P. Radnev, ?Injective objects in the category of p-rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 5, 49?55 (1976). · Zbl 0351.16022
[209] P. Radnev, ?Projective objects in the category of p-rings,? Serdika. B?lg. Mat. Spisanie,6, No. 2, 183?184 (1980). · Zbl 0466.16034
[210] P. Radnev and P. Bolyuchev, ?The Abian order in p-rings,? Nauch. Trud. Plovdiv. Univ. Mat.,1978,16, 198?200 (1980).
[211] Yu. P. Razmyslov, ?Algebras satisfying identical relations of Capelli type,? Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 1, 143?166 (1981). · Zbl 0465.16009
[212] V. A. Ratinov, ?Semiprimary rings with a locally nilpotent adjoint group,? Moscow State Pedagogic Institute, Moscow (1979) (VINITI No. 1904-79).
[213] V. A. Ratinov, ?Finite commutative rings with special types of groups of units,? Moscow State Pedagogic Institute, Moscow (1979) (VINITI No. 215-80).
[214] V. A. Ratinov, ?Finite commutative rings with special types of groups of units,? Mat. Zametki,32, No. 6, 799?807 (1982).
[215] Ts. G. Rashkova, ?Rings with a Krull dimension,? Nauch. Trud. Vissh. Inst. Mashinostr. Mekh. Elektrifik. Selsk. Stop. ? Ruse, Ser. 9,21, 15?18 (1979).
[216] Ts. G. Rashkova and P. I. Rashkov, ?A property of the Jacobson radical in a ring with a finite group of automorphisms,? Godishn. VUZ. Prilozh. Mat., 1980,16, No. 2, 71?79 (1981). · Zbl 0511.16008
[217] A. S. Rybkin, ?Finite local principal ideal rings,? Mat. Zametki,28. No. 1, 3?16 (1980).
[218] Yu. M. Ryabukhin, ?Countably generated locally \(\mathfrak{M}\) -algebras,? Izv. Akad. Nauk SSSR, Ser. Mat.,40, No. 6, 1203?1223 (1976).
[219] Yu. M. Ryabukhin, ?Supernilpotent and special radicals,? Mat. Issled., No. 48, 48?64 (1978). · Zbl 0409.16007
[220] Yu. M. Ryabukhin and G. P. Chekanu, ?On locally finite algebras,? Mat. Issled., No. 49, 122?127 (1979). · Zbl 0444.16008
[221] Yu. M. Ryabukhin and G. P. Chekanu, ?Distinguishability of nonmatrix varieties,? Mat. Issled., No. 62, 130?140 (1981). · Zbl 0462.16009
[222] C. Salavova, ?Radicals of rings with involution. I, II,? Comment. Math. Univ. Carol.,18, No. 2, 367?381 (1977);18, No. 3, 455?466 (1977). · Zbl 0362.16003
[223] M. V. Sapir, ?Varieties with a countable number of subquasivarieties,? Ural University, Sverdlovsk (1981) (VINITI No. 4738-81).
[224] M. V. Sapir, ?Varieties with a finite number of subquasivarieties,? Sib. Mat. Zh.,22, No. 6, 168?187 (1981). · Zbl 0491.08011
[225] I. Svoboda, ?A note on the definition of regular ideals,? Arch. Mat.,13, No. 1, 47?49 (1977).
[226] P. N. Siderov, ?A basis of identities of the algebra of triangular matrices over an arbitrary field,? Pliska. B?lg. Mat. Stud.,2, 143?152 (1981).
[227] P. N. Siderov, ?Two remarks on critical associative rings,? in: Mathematics and Mathematics Education, Eleventh Proletarian Conference of the Association of Bulgarian Mathematicians, April 6?9, 1982, Sofia (1982), pp. 281?286. · Zbl 0502.16007
[228] P. N. Siderov, ?The Spechtian property of a variety of associative algebras defined by the product of three commutators of arbitrary length,? Serdika. B?lg. Mat. Spisanie,8, No. 1, 35?91 (1982). · Zbl 0511.16015
[229] L. A. Skornyakov, ?Rings,? in: Algebra. Topology, 1962 (Itogi Nauki) [in Russian], VINITI Akad. Nauk SSSR, Moscow (1963), pp. 59?79.
[230] L. A. Skornyakov, ?Modules,? in: Algebra. Topology, 1962 (Itogi Nauki) [in Russian], VINITI Akad. Nauk SSSR, Moscow (1963), pp. 80?89.
[231] L. A. Skornyakov, ?Modules,? in: Algebra. Topology. Geometry, 1962 (Itogi Nauki) [n Russian], Moscow (1967), pp. 181?216.
[232] L. A. Skornyakov, ?On a condition of Andrunakievich-Ryabukhin,? Mat. Issled., No. 44, 174?176 (1977).
[233] L. A. Skornyakov, Elements of General Algebra [in Russian], Nauka, Moscow (1983). · Zbl 0528.00001
[234] L. A. Skornyakov and A. V. Mikhalev, ?Modules,? J. Sov. Math. (in press).
[235] V. D. Smirnov, ?Dual isomorphisms of locally nilpotent rings,? Mat. Zap. Ural. Univ.,12, No. 3, 133?146 (1981). · Zbl 0535.16009
[236] V. V. Stovba, ?The finite basis property of certain varieties of Lie algebras and associative algebras,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 54?58 (1982). · Zbl 0494.17011
[237] I. S. Stoyanov and I. I. Tonov, ?Union and product of varieties of associative algebras,? Pliska. B?lg. Mat. Stud.,2, 130?133 (1981).
[238] A. Stonkova-Venkova, ?The cancellation law in the groupoid of varieties of associative algebras,? Nauch. Trud. Plovdiv. Univ. Mat. 1975,13, No. 1, 81?88 (1977).
[239] A. Stonkova-Venkova, ?Bases of identities of Grassmann algebras,? Serdika. B?lg, Mat. Spisanie,6, No. 1, 63?72 (1980).
[240] A. Stonkova-Venkova, ?The lattice of the variety of associative algebras defined by a commutator of length five,? Dokl. B?lg. Akad. Nauk,34, 465?467 (1981).
[241] A. Stonkova-Venkova, ?Some lattices of varieties of associative algebras defined by identities of degree five,? Dokl. B?lg. Akad. Nauk,35, No. 7, 867?868 (1982).
[242] A. A. Suslin, ?Algebraic K-theory,? J. Sov. Math.,28, No. 6 (1985).
[243] I. K. Tonov, ?Some properties of the product of varieties of associative algebras,? Serdika. B?lg. Mat. Spisanie,7, No. 1, 34?41 (1981). · Zbl 0521.16013
[244] I. K. Tonov, ?Chain varieties of associative algebras with unity,? Serdika. B?lg. Mat. Spisanie,7, No. 3, 250?257 (1981).
[245] I. K. Tonov, ?Almost weakly Noetherian varieties of associative algebras,? Pliska. B?lg. Mat. Stud.,2, 162?165 (1981).
[246] A. A. Tuganbaev, ?Rings over which each module is a direct sum of distributive modules,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 1, 61?64 (1980). · Zbl 0428.16032
[247] A. A. Tuganbaev, ?Distributive modules,? Usp. Mat. Nauk,35, No. 5, 245?246 (1980).
[248] A. A. Tuganbaev, ?Distributive Noetherian rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 2, 30?34 (1980). · Zbl 0436.16011
[249] A. A. Tuganbaev, ?Integrally closed rings,? Mat. Sb.,115, No. 4, 544?559 (1981).
[250] A. A. Tuganbaev, ?Distributive rings,? in: Sixteenth All-Union Algebra Conference, September 22?25, 1981, Abstracts of Reports, Part 1, Leningrad (1981), p. 159.
[251] A. A. Tuganbaev, ?Rings with a distributive lattice of right ideals,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 6, 108 (1981).
[252] A. A. Tuganbaev, ?Integrally closed Noetherian rings,? Usp. Mat. Nauk,36, No. 5, 195?196 (1981).
[253] A. A. Tuganbaev, ?Distributive group rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 4, 78 (1982).
[254] A. A. Tuganbaev, ?Distributive rings,? in: Fifth All-Union Symposium on the Theory of Rings, Algebras, and Modules, Novosibirsk, September 21?23, 1982, Abstracts of Communications, Institute of Mathematics, Novosibirsk (1982), pp. 133?134.
[255] A. A. Tuganbaev, ?Distributive rings,? Vest. Mosk. Gos. Univ. Mat. Mekh., No. 6, 108 (1982). · Zbl 0564.16017
[256] A. A. Tuganbaev, ?Distributive modules and rings,? Vest. Mosk. Gos. Univ, Mat. Mekh., No. 1, 79?80 (1984). · Zbl 0564.16022
[257] A. A. Tuganbaev, ?Distributive modules and rings,? Usp. Mat. Nauk,39, No. 1, 157?158 (1984). · Zbl 0564.16022
[258] A. A. Tuganbaev, ?Distributive rings,? Mat. Zametki,35, No. 3, 329?332 (1984). · Zbl 0564.16017
[259] V. D. Tén, ?f-Radical extensions of algebras,? Kat. SSR Fylym Akad. Khabarlary, Izv. Akad. Nauk KazSSR, Ser. Fiz.-Mat., No. 1, 81?83 (1981).
[260] V. D. Tén, ?Functions with values in algebras and rings of invariants,? Izv. Vuzov. Mat., No. 2, 71?77 (1982).
[261] D. V. Tyukavkin, ?An analogue of Pierce sheaves for rings with involution,? Usp. Mat. Nauk,38, No. 5, 209?210 (1983). · Zbl 0543.16006
[262] M. Ya. Finkel’shtein, ?Rings in which the annihilators form a sublattice of the lattice of ideals,? Sib. Mat. Zh.,24, No. 6, 160?167 (1983).
[263] P. A. Freidman, ?Rings in which all commutative subrings are finitely generated,? Mat. Zap. Ural. Univ.,11, No. 1, 190?199 (1978).
[264] P. A. Freidman, ?Torsion-free nilrings with a modular lattice of subrings,? in: Algebraic Systems and Their Varieties [in Russian], Sverdlovsk (1982), pp. 133?137.
[265] M. D. Friger, ?Automorphisms of torsion-free rings of finite rank,? Tomsk Univ. (1977) (VINITI No. 4205-77).
[266] M. D. Friger, ?Torsion-free rings with regular automorphisms,? in: Materials of the Seventh Regional Conference on Mathematics and Mechanics, Tomsk, November 17?19, 1981, Algebra Section, Tomsk (1981), p. 49. · Zbl 0848.16028
[267] Dzh. Khadzhiev, ?On the finite generation of algebras of invariants,? Sb. Nauch. Trud. Tashkent. Univ., No. 573, 79?81 (1978). · Zbl 0135.02002
[268] V. K. Kharchenko, ?Galois extensions of radical algebras,? Mat. Sb.,101, No. 4, 500?507 (1976).
[269] V. K. Kharchenko, ?Galois theory of semiprime rings,? Algebra Logika,16, No. 3, 313?363 (1977). · Zbl 0414.16019
[270] V. K. Kharchenko, ?Algebras of invariants of free algebras,? Algebra Logika,17, No. 4, 478?487 (1978).
[271] V. K. Kharchenko, ?Differential identities of prime rings,? Algebra Logika,17, No. 2, 220?238 (1978).
[272] V. K. Kharchenko, ?Differential identities of semiprime rings,? Algebra Logika,18, No. 1, 86?119 (1979). · Zbl 0464.16027
[273] V. K. Kharchenko, ?A remark on central polynomials,? Mat. Zametki,26, No. 3, 345?346 (1979). · Zbl 0435.16008
[274] V. K. Kharchenko, ?Action of groups and Lie algebras on noncommutative rings,? Usp. Mat. Nauk,35, No. 2, 67?90 (1980).
[275] V. K. Kharchenko, ?Constants of derivations of prime rings,? Izv. Akad. Nauk SSSR, Ser. Mat.,45, No. 2, 435?461 (1981). · Zbl 0469.16019
[276] V. K. Kharchenko, ?Centralizers in prime rings,? Algebra Logika,20, No. 2, 231?247 (1981). · Zbl 0494.16002
[277] I. L. Khmel’nitskii, ?Commutative nilrings with the idealizer condition,? Mat. Zap. Ural. Univ.,10, No. 3, 197?213 (1977).
[278] I. L. Khmeltnitskii, ?Rings in which all subrings are metaideals of finite index,? Izv. Vuzov. Mat., No. 4, 53?67 (1979).
[279] V. G. Tsirulik, ?The resultant of skew polynomials and factorization,? in: Differential Equations: Qualitative Theory [in Russian], Ryazan (1981), pp. 141?150.
[280] G. P. Chekanu, ?Distinguished varieties of distinguished algebras,? Mat. Issled., No. 49, 149?156 (1979).
[281] G. P. Chekanu, ?On local finiteness in varieties of associative algebras,? Mat. Sb.,113, No. 2, 217?244 (1980). · Zbl 0468.16016
[282] P. Zh. Chirikov and P. N. Siderov, ?Bases of identities of certain varieties of associative algebras,? Pliska. B?lg. Mat. Stud.,2, 103?115 (1981).
[283] V. Chukanov, ?An axiomatic characteristic of the Krull dimension,? Godishn. Sofiisk. Univ., Fak. Mat. Mekh., 1974?1975,69, 141?144 (1979).
[284] L. M. Shneerson, ?Conditions under which finitely presented algebras are free,? Izv. Vuzov. Mat., No. 7, 66?68 (1979). · Zbl 0421.16001
[285] A. V. Yagzhev, ?Generators of the group of tame automorphisms of a polynomial algebra,? Sib. Mat. Zh.,18, No. 1, 222?225 (1977). · Zbl 0411.20024
[286] A. M. Yakovlev and A. M. Movsisyan, ?Convolution identities for tensors,? J. Sov. Math.,27, No. 4 (1984). · Zbl 0552.15013
[287] A. Abian, ?Boolean rings of sets with finite subcovering property,? Math. Nachr.,47, No. 1/6, 77?78 (1970). · Zbl 0252.06012
[288] A. Abian, ?Categoricity of denumerable atomless Boolean rings,? Stud. Log.,30, 63?68 (1972). · Zbl 0268.02032
[289] A. Abian, Boolean Rings, Branden Press, Boston (1976).
[290] A. Abian, ?The prime ideals of the Boolean ring of intervals,? Publ. Math.,26, Nos. 3?4, 215?217 (1979). · Zbl 0442.06005
[291] A. Abian, ?The number of prime ideals of a p-ring,? An. Sti. Univ. Iasi, Sec. la,25, No. 2, 261?268 (1979). · Zbl 0432.13003
[292] A. Abian, ?Conditionally complete and conditionally orthogonally complete rings,? Czech. Mat. J.,30, No. 2, 171?176 (1980). · Zbl 0448.06018
[293] A. Abian, ?Tree p-rings and two countable chain conditions,? Mathematica (RSR), No. 2, 177?188 (1980). · Zbl 0487.16015
[294] A. Abian and D. R. Floyd, ?Rings satisfying Wilson’s equality,? Period. Math. Hung.,7, Nos. 3?4, 229?232 (1976). · Zbl 0297.17002
[295] H. Abu-Khusam, H. Tominaga, and A. Yaqub, ?Equational definability of addition in rings satisfying polynomial identities,? Math. J. Okayama Univ.,22, No. 1, 55?57 (1980). · Zbl 0436.16016
[296] A. Adler, ?On the multiplicative semigroups of rings,? Commun. Algebra,6, No. 17, 1751?1753 (1978). · Zbl 0399.03021
[297] M. Ahmad, ?Lie and Jordan ideals in prime rings with derivations,? Proc. Am. Math. Soc.,55, No. 2, 275?278 (1976). · Zbl 0327.16021
[298] U. Albrecht, ?Über endliche Galoissche Schiefkörpererweiterungen ohne endliche Galoisgruppen,? Commun. Algebra,6, No. 1, 97?103 (1978). · Zbl 0369.16028
[299] J. Alev, ?Quelques propriétés de l’anneau RG. II,? Commun. Algebra,10, No. 2, 203?216 (1982). · Zbl 0475.16025
[300] J. Alev, ?Fonction de Hilbert-Samuel dans les anneaux locaux réguliers noncommutatifs,? Glasgow Math. J.,24, No. 1, 65?69 (1983). · Zbl 0503.16014
[301] Y. Al-Khamees, ?The intersection of distinct Galois subrings is not necessarily Galois,? Compos. Math.,40, No. 3, 283?286 (1980).
[302] Y. Al-Khamees, ?Finite rings in which the multiplication of any two zero-divisors is zero,? Arch. Math.,37, No. 2, 144?149 (1981). · Zbl 0471.16014
[303] A. H. Al-Moajil, ?Finite dimensionality of a semiprime normal algebra which is equal to its socle,? Math. Sem. Notes Kobe Univ.,7, No. 1, 133?137 (1979).
[304] I. Amin, ?Note on generalized regular semigroups and rings,? Proc. Math. Phys. Soc. Egypt, No. 1, 9?17 (1978). · Zbl 0426.16010
[305] I. Amin and F. Szàsz, ?On rings with (m,n)-properties,? Math. Sem. Notes Kobe Univ.,9, No. 2, 247?252 (1981).
[306] I. Amin and F. A. Szàsz, ?On extensions of nilpotent torsion rings by semisimple rings,? Bull. Austral. Math. Soc.,24, No. 1, 149?152 (1981). · Zbl 0454.16006
[307] S. A. Amitsur, ?On a central identity for matrix rings,? J. London Math. Soc.,14, No. 1, 1?6 (1976). · Zbl 0341.16012
[308] S. A. Amitsur, ?Alternating identities,? in: Ring Theory, Proceedings of a Conference at Ohio University, 1976, New York-Basel (1977), pp. 1?14.
[309] S. A. Amitsur, ?Generic splitting fields,? in: Lecture Notes in Mathematics, Vol. 917 (1982), pp. 1?24. · Zbl 0501.16021
[310] S. A. Amitsur, ?Division algebras. A survey,? Contemp. Math.,13, 3?26 (1982). · Zbl 0504.16011
[311] S. A. Amitsur, L. H. Rowen, and J. P. Tignol, ?Division algebras of degree 4 and 8 with involution,? Isr. J. Math.,33, No. 2, 133?148 (1979). · Zbl 0422.16010
[312] S. A. Amitsur and D. Saltman, ?Generic abelian crossed products and p-algebras,? J. Algebra,51, No. 1, 76?87 (1978). · Zbl 0391.13001
[313] S. A. Amitsur and L. W. Small, ?Prime PI-rings,? Bull. Am. Math. Soc.,83, No. 2, 249?251 (1977). · Zbl 0351.16010
[314] S. A. Amitsur and L. W. Small, ?Polynomials over division rings,? Isr. J. Math.,31, Nos. 3?4, 353?358 (1978). · Zbl 0395.16013
[315] S. A. Amitsur and L. W. Small, ?Prime ideals in PI-rings,? J. Algebra,62, No. 2, 358?383 (1980). · Zbl 0424.16009
[316] D. D. Anderson, ?Some remarks on the ring R(X),? Comment. Math. Univ. St. Pauli,26, No. 2, 137?140 (1978). · Zbl 0373.13003
[317] F. W. Anderson, ?Transitive square-free algebras,? J. Algebra,62, No. 1, 61?85 (1980). · Zbl 0442.16012
[318] T. Anderson and R. Wiegandt, ?Weakly homomorphically closed semisimple classes,? Acta Math. Acad. Sci. Hung.,34, Nos. 3?4, 329?336 (1979). · Zbl 0429.17002
[319] V. A. Andrunakievich (Andrunakievic), Yu. M. Ryabukhin (Ju. M. Rjabuhin), K. K. Krachilov (Kracilov), and B. I. Tébyrsé (Tèbyrcé), ?Erbliche Radikale von Algebren (Torsionen von Algebren),? Stud. Alg. Anwed.,1, 1?8 (1976).
[320] P. N. Anh, ?On a problem of F. Szasz,? Commun. Algebra,17, No. 9, 1743?1746 (1981).
[321] P. N. Anh and L. Marki, ?Rees matrix rings,? J. Algebra,81, No. 2, 340?369 (1983). · Zbl 0525.16011
[322] E. P. Armendariz, ?On semiprime PI-algebras over commutative regular rings,? Pac. J. Math.,66, No. 1, 23?28 (1976). · Zbl 0349.16006
[323] B. P. Armendariz, ?On semiprime rings of bounded index,? Proc. Am. Math. Soc.,85, No. 2, 146?148 (1982). · Zbl 0496.16004
[324] J. Arnold, ?Power series rings over discrete valuation rings,? Pac. J. Math.,93, No. 1, 31?33 (1981). · Zbl 0438.13016
[325] M. Artin and W. Schelter, ?A version of Zariski’s main theorem for polynomial identity rings,? Am. J. Math.,101, No. 2, 301?330 (1979). · Zbl 0406.16011
[326] M. Artin and W. Schelter, ?Integral ring homomorphisms,? Adv. Math.,39, No. 3, 289?329 (1981). · Zbl 0461.16014
[327] D. L. Atkins and J. W. Brewer, ?D-Automorphisms of power series rings and the continuous radical of D,? J. Algebra,67, No. 1, 185?203 (1980). · Zbl 0449.13004
[328] K. E. Aubert, ?Ideal systems and lattice theory. I, II, III,? Algebra Univ.,1, 204?213 (1971); J. Reine Angew. Math.,292, 32?42 (1978); Math. Jpn.,24, No. 3, 247?252 (1979). · Zbl 0247.06008
[329] R. Awtar, ?On Jordan structure in semiprime rings,? Can. J. Math.,28, No. 5, 1067?1072 (1976). · Zbl 0317.16017
[330] C. Ayoub, ?The additive structure of a ring and the splitting properties of the torsion ideal,? in: Ring Theory, Proceedings of a Conference at Ohio University, 1976, New York-Basel (1977), pp. 227?229.
[331] G. Azumaya, ?Separable rings,? J. Algebra,63, No. 1, 1?14 (1980). · Zbl 0442.16002
[332] D. Baragar and J. L. Fischer, ?T-Ideals based on multilinear identities,? Publ. Math.,23, Nos. 3?4, Separatum, 225?227 (1976).
[333] D. L. Barnett, ?A condition for a ring to be Boolean,? Am. Math. Monthly,74, No. 1, 44?45 (1967). · Zbl 0154.27202
[334] B. G. Barnwell and A. C. Mewbom, ?The structure sheaf of an incidence algebra,? J. Austral. Math. Soc.,A24, No. 1, 92?102 (1978). · Zbl 0376.16025
[335] G. Baumslag, ?On the subalgebras of certain finitely presented algebras,? Bull. Am. Math. Soc.,82, No. 1, 95?98 (1976). · Zbl 0336.16003
[336] R. Bautista, ?Sobre las unidades de algebras finitas,? An. Inst. Mat. Univ. Nac. Auton. Mex.,16, No. 2, 1?78 (1976).
[337] A. Bauval, ?Une condition nécessaire d’équivalence élémentaire entre anneaux de polynômes sur des corps,? C. R. Acad. Sci., Ser. 1,295 No. 2, 31?33 (1982).
[338] W. B. Baxter and L. A. Casciotti, ?Rings with involution and prime radical,? Pac. J. Math.,69, No. 1, 11?17 (1977). · Zbl 0347.16008
[339] W. B. Baxter and W. S. Martindale, ?Jordan homomorphisms of semiprime rings,? J. Algebra,56, No. 2, 457?471 (1979). · Zbl 0427.16006
[340] R. A. Beauregard, ?An analog of Nagata’s theorem for modular LCM domains,? Can. J. Math.,29, No. 2, 307?314 (1977). · Zbl 0329.16001
[341] R. A. Beauregard, ?Left and right invariance in an integral domain,? Proc. Am. Math. Soc.,67, No. 2, 201?205 (1977). · Zbl 0351.16001
[342] R. A. Beauregard, ?Left versus right LCM domains,? Proc. Am. Math. Soc.,78, No. 4, 464?466 (1980). · Zbl 0445.16001
[343] S. S. Bedi and J. Ram, ?Jacobson radical of skew polynomial rings and skew group rings,? Isr. J. Math.,35, No. 4, 327?338 (1980). · Zbl 0436.16002
[344] B. A. Behrens, ?A semigroup theoretical approach to the noncommutative arithmetic,? Algebra-Ber., Vol. 9, No. 43 (1982). · Zbl 0495.06007
[345] K. I. Beidar, ?A chain of Kurosh may have an arbitrary finite length,? Czech. Math. J.,32, No. 3, 418?422 (1982). · Zbl 0503.16005
[346] K. I. Beidar, A. V. Mikhalev, and C. Salavova, ?Generalized identities and semiprime rings with involution,? Math. Z., No. 1, 37?62 (1981). · Zbl 0471.16008
[347] K. I. Beidar and C. Salavova, ?Some examples of supernilpotent nonspecial radicals,? Acta Math. Acad. Sci. Hung.,40, Nos. 1?2, 109?112 (1982). · Zbl 0465.16002
[348] H. B. Bell, ?On quasiperiodic rings,? Arch. Maah.,36, No. 6, 502?509 (1981).
[349] G. Benkart, ?The Lie inner ideal structure of associative rings,? J. Algebra,43, No. 2, 561?584 (1976). · Zbl 0342.16009
[350] S. K. Berberian, ?The center of a corner of a ring,? J. Algebra,71, No. 2, 515?523 (1981). · Zbl 0466.16015
[351] S. K. Berberian, ?The maximal ring of quotients of a finite von Neumann algebra,? Rocky Mount. J. Math.,12, No. 1, 149?164 (1982). · Zbl 0484.46054
[352] A. Berele, ?Homogeneous polynomial identities,? Isr. J. Math.,42, No. 3, 258?272 (1982). · Zbl 0522.16015
[353] A. Berele and A. Regev, ?Applications of Hook-Young diagrams to PI-algebras,? J. Algebra,82, No. 2, 559?567 (1983). · Zbl 0517.16013
[354] J. Bergen, ?Automorphism with unipotent values,? Rend. Circ. Mat. Palermo,31, No. 2, 226?232 (1982). · Zbl 0493.16023
[355] J. Bergen, I. N. Herstein, and J. W. Kerr, ?Lie ideals and derivations of prime rings,? J. Algebra,71, No. 1, 259?267 (1981). · Zbl 0463.16023
[356] G. M. Bergman, ?Rational relations and rational identities in division rings. I, II,? J. Algebra,43, No. 1, 252?266 (1976);43, No. 1, 267?297 (1976). · Zbl 0307.16013
[357] G. M. Bergman, ?Zero divisors in tensor products,? in: Lecture Notes in Mathematics, Vol. 545 (1976), pp. 32?82. · Zbl 0331.16015
[358] G. M. Bergman, ?The diamond lemma for ring theory,? Adv. Math.,29, No. 2, 178?218 (1978). · Zbl 0326.16019
[359] G. Berline and C.-L. Bernard, ?Groupes nilpotents plangeables dans le demigroupe multiplicatif d’un anneau local,? C. R. Acad. Sci.,AB285, No. 14, A883-A885 (1977). · Zbl 0372.20017
[360] G. F. Birkenmeier, ?Indecomposable decompositions and the minimal direct summand containing the nilpotents,? Proc. Am. Math. Soc.,73, No. 1, 11?14 (1979). · Zbl 0369.16025
[361] G. F. Birkenmeier, ?Idempotents and completely semiprime ideals,? Commun. Algebra,11, No. 6, 567?580 (1983). · Zbl 0505.16004
[362] G. F. Birkenmeier and R. P. Tucci, ?Does every right ideal of a matrix ring contain a nilpotent element?,? Am. Math. Monthly,84, No. 8, 631?633 (1977). · Zbl 0375.16020
[363] J. Bit-David and J. C. Robson, ?Normalizing extensions. I, II,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 1?5; Vol. 825 (1980), pp. 6?9. · Zbl 0446.16022
[364] W. D. Blair, ?An embedding theorem for rings,? Commun. Algebra,4, No. 2, 193?198 (1976). · Zbl 0326.16018
[365] W. D. Blair, ?Remarks on primitive rings with nonzero socles,? Commun. Algebra,8, No. 7, 623?634 (1980). · Zbl 0443.16005
[366] A. H. Boers, ?Duplication of algebras,? Proc. Kon. Ned. Akad. Wetensch., A85, No. 2, 121?125 (1982). · Zbl 0488.17002
[367] M. Boffa, ?A note on existentially complete division rings,? in: Lecture Notes in Mathematics, Vol. 798 (1975), pp. 56?59. · Zbl 0317.02066
[368] J. Bogart, ?Wedderburn factors and structure of certain associative algebras,? J. Algebra,50, No. 1, 122?134 (1978). · Zbl 0372.16015
[369] L. Bonami, ?About ring extensions with unity,? Bull. Soc. Math. Belg.,B32, No. 1, 97?106 (1980). · Zbl 0463.16018
[370] G. Bonnefond, ?Sur la dimension de Krull de A[x, x?1, ?],? C. R. Acad. Sci.,AB286, No. 18, A759-A762 (1978).
[371] W. Borho, ?Invariant dimension and restricted extension of Noetherian rings,? in: Lecture Notes in Mathematics, Vol. 924 (1982), pp. 51?71. · Zbl 0482.16015
[372] W. Borho and H. Kraft, ?Über die Gelfand-Kirillow-Dimension,? Math. Ann.,220, No. 1, 1?24 (1976). · Zbl 0306.17005
[373] A. K. Boyle, M. G. Deshpande, and E. H. Feller, ?On nonsingularly R-primitive rings,? Pac. J. Math.,68, No. 2, 303?311 (1977). · Zbl 0369.16018
[374] A. Braun, ?A characterization of prime noetherian PI-rings and a theorem of Mori-Nagata,? Proc. Am. Math. Soc.,74, No. 1, 9?15 (1979). · Zbl 0408.16015
[375] A. Braun, ?Affine polynomial identity rings and their generalizations,? J. Algebra,58, No. 2, 481?494 (1979). · Zbl 0411.16015
[376] A. Braun, ?A note on Noetherian PI-rings,? Proc. Am. Math. Soc.,83, No. 4, 670?672 (1981). · Zbl 0473.16014
[377] A. Braun, ?On Artin’s theorem and Azumaya algebras,? J. Algebra,77, No. 2, 323?332 (1982). · Zbl 0491.16009
[378] A. Braun, ?The radical in finitely generated PI-algebras,? Bull. Am. Math. Soc.,7, No. 2, 385?386 (1982). · Zbl 0493.16011
[379] A. Braun, ?PI-G-Rings and the contracability of primes,? Isr. J. Math.,43, No. 2, 116?128 (1982). · Zbl 0509.16008
[380] J. W. Brewer, ?Power series over commutative rings,? Lecture Notes in Pure and Applied Mathematics, Vol. 64 (1981).
[381] J. W. Brewer, T. Jooste, L. Riche, E. Martens, A. Müller, M. Sheridan, and W. Rooyen, ?Infinite groups acting on normal power series rings,? J. Algebra,53, No. 2, 471?476 (1978). · Zbl 0392.13003
[382] J. W. Brewer, ?Must R be Noetherian if RG is Noetherian?,? Commun. Algebra,5, No. 9, 969?979 (1977). · Zbl 0354.13012
[383] M. Broué, ?Radical, hauters, p-sections et blocs,? Ann. Math.,107, No. 1, 89?107 (1978).
[384] K. A. Brown and T. H. Lenagan, ?A note on Jacobson’s conjecture for right Noetherian rings,? Glasgow Math. J.,23, No. 1, 7?8 (1982). · Zbl 0478.16010
[385] H. H. Brungs, ?Unique factorization in rings with right ACC1 Glasgow Math. J.,19, No. 2, 167?171 (1978). · Zbl 0406.16001
[386] H. H. Brungs and G. Törner, ?Right chain rings and the generalized semigroup of divisibility,? Pac. J. Math.,97, No. 2, 293?305 (1981). · Zbl 0482.16002
[387] T. T. Bui, ?On the S0-algebraic extensions of algebras,? Dokl. Bolg. Akad. Nauk,33, No. 7, 887?888 (1980).
[388] T. T. Bui, ?A generalization of a theorem of Zelmanov,? Dokl. Bolg. Akad. Nauk,33, No. 8, 1047?1048 (1980).
[389] T. T. Bui, ?On the basis of the identities of the matrix algebra of second order over a field of characteristic zero,? Serdika. B?lg. Mat. Spisanie,7, No. 3, 117?194 (1981).
[390] W. D. Burgess, ?On free commutative regular rings,? Commun. Algebra,8, No. 7, 671?683 (1980). · Zbl 0429.16011
[391] W. D. Burgess and D. E. Handelman, ?The N*-metric completion of regular rings,? Math. Ann.,261, No. 2, 235?254 (1982). · Zbl 0496.16014
[392] W. D. Burgess and R. Raphael, ?On Conrad’s partial order relation on semiprime rings and semigroups,? Semigroup Forum,16, No. 2, 133?140 (1978). · Zbl 0382.06019
[393] W. D. Burgess and R. Raphael, ?Order completions of semiprime rings,? Czech. Math. J.,31, No. 1, 91?97 (1981). · Zbl 0504.06015
[394] W. D. Burgess and W. Stephenson, ?An analogue of the Pierce sheaf for noncommutative rings,? Commun. Algebra,6, No. 9, 863?886 (1978). · Zbl 0374.16017
[395] W. D. Burgess and W. Stephenson, ?Rings all of whose Pierce stalks are local,? Can. Math. Bull.,22, No. 2, 159?164 (1979). · Zbl 0411.16009
[396] R. Burgetova and D. Klucky, ?The spectrum of a cartesian product of plural algebras,? Cas. P?stov. Mat., 106, No. 4, 402?406 (1981). · Zbl 0475.16021
[397] S. Buzeteanu and C. Nita, ?Sur les nil sous-anneaux,? Rev. Roum. Math. Pures Appl.,24, No. 5, 715?717 (1979). · Zbl 0415.16014
[398] L. Carini, ?Alcune osservazioni sui morfismi tra anelli con unita,? Rend. Ist. Lombardo. Accad. Sci. Lett.,A112, No. 2, 289?301 (1978). · Zbl 0437.08002
[399] G. Carrà, ?Sullo spettro differenziale di un anello differenziale,? Matematiche,33, No. 1, 1?17 (1978).
[400] A. B. Carson, ?Algebraically closed regular rings,? Can. J. Math.,26, 1036?1049 (1974). · Zbl 0269.13012
[401] A. B. Carson, ?Homogeneous direct summands of regular rings of finite index,? Commun. Algebra,10, No. 13, 1361?1368 (1982). · Zbl 0486.16009
[402] D. Castella, ?Une charactérisation des anneaux biréguliers auto-injectifs à droite,? Commun. Algebra,9, No. 11, 1147?1159 (1981). · Zbl 0457.16013
[403] J.-B. Castillon, ?Réciproque à un théorème de P. Samuel,? C. R. Acad. Sci.,283, No. 4, A141-A142 (1976).
[404] J.-B. Castillon and A. Micali, ?A-Endomorphismes de A{X},? Manuscr. Math.,25, No. 3, 249?261 (1978). · Zbl 0407.13021
[405] F. S. Cater, ?Modified chain conditions for rings without identity,? Yokohama Math. J.,27, No. 1, 1?22 (1979). · Zbl 0425.16014
[406] G. Cauchon, ?Anneaux semipremiers noethériens à identités polynômiales,? Bull. Soc. Math. France,104, No. 1, 99?111 (1976). · Zbl 0328.16018
[407] G. Cauchon, ?Les T-anneaux et les anneaux à identités polynômiales noethériens,? Thèses Doct. Sci. Math. Univ. Paris (1977).
[408] G. Cauchon, ?Idéaux bilatéres et centre des anneaux de polynômes de ore sur les anneaux quasi-simples,? in: Lecture Notes in Mathematics, Vol. 740 (1979), pp. 397?407. · Zbl 0415.16001
[409] G. Cauchon, ?Coeur de K[X, ?, ?] et questions d’algébricité dans K(X, ?, ?),? in: Lecture Notes in Mathematics, Vol. 795 (1980), pp. 179?190.
[410] G. Cauchon and J. C. Robson, ?Endomorphisms, derivations, and polynomial rings,? J. Algebra,53, No. 1, 227?238 (1978). · Zbl 0384.16008
[411] B. Cerovic, ?Antiinverse rings,? Publ. Inst. Math.,29, 45?48 (1981). · Zbl 0491.16031
[412] M. Chacron, ?Algebraic ?-ring extensions of bounded index,? J. Algebra,44, No. 2, 370?388 (1977). · Zbl 0346.16019
[413] M. Chacron, ?Treillis des idempotents centraux d’un anneau,? Groupe Étude Algèbre, Univ. Pierre et Marie Curie,2, 5/01?5/11, 1976?1977 (1978).
[414] M. Chacron and G. Thierrin, ?An algebraic dependence over the quasicentre,? Ann. Mat. Pura Appl.,110, 1?14 (1976). · Zbl 0351.16014
[415] M. Chamarle, ?Anneaux noethériens à droite, entiers sur leur centre,? in: Ring Theory, Proceedings of the Antwerp Conference, 1977, New York-Basel (1978), pp. 1?8.
[416] M. Chamarie, ?Anneaux de Krull non conmutatifs,? J. Algebra,72, No. 1, 210?222 (1981). · Zbl 0468.16008
[417] V. R. Chandran, ?On duo-rings,? Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.,58, No. 6, 823?827 (1975).
[418] V. R. Chandran, ?On two analogues of Cohen’s theorem,? Indian J. Pure Appl. Math.,8, No. 1, 54?59 (1977). · Zbl 0355.16017
[419] S. Chatterjee, ?Ideal-theoretic characterizations of regular duo semigroups and rings,? Math. Educ. Sec, A11, 9?10 (1977). · Zbl 0374.20072
[420] A. W. Chatters, ?Divisible ideals of Noetherian rings,? Bull. London Math. Soc.,13, No. 4, 328?330 (1981). · Zbl 0438.16009
[421] A. W. Chatters, ?A characterization of right Noetherian rings,? Quart. J. Math.,33, No. 129, 65?69 (1982). · Zbl 0443.16011
[422] A. W. Chatters and G. R. Hajarnavis, ?The Artin radical of a Noetherian ring,? J. Austral. Math. Soc.,A23, No. 3, 379?384 (1977). · Zbl 0376.16021
[423] A. W. Chatters and S. Jødrup, ?Hereditary finitely generated PI-algebras,? J. Algebra,82, No. 1, 40?52 (1983). · Zbl 0514.16011
[424] T. Cheatham and E. Enochs, ?C-Commutativity,? J. Austral. Math. Soc.,A30, No. 2, 252?255 (1980).
[425] M.-H. Cheng, ?A remark on a theorem of Azumaya,? Tamkang. J. Math.,8, No. 2, 131?134 (1977).
[426] G. L. Cherlin, ?Amalgamation bases for commutative rings without nilpotent elements,? Israel J. Math.,25, Nos. 1?2, 87?96 (1976). · Zbl 0352.02041
[427] K. Chiba, ?On homomorphisms of rings into matrix rings,? Math. J. Okayama Univ.,21, No. 2, 179?182 (1979). · Zbl 0431.16006
[428] K. Chiba and H. Tominaga, ?On generalizations of P1-rings and gsr-rings,? Math. J. Okayama Univ.,18, No. 2, 149?152 (1976). · Zbl 0335.16012
[429] T. Chinburg and M. Henriksen, ?Multiplicatively periodic rings,? Am. Math. Month.,83, No. 7, 547?549 (1976). · Zbl 0344.16022
[430] D. Choate, ?Generators of simple algebras,? Bull. Austral. Math. Soc.,25, No. 3, 433?440 (1982). · Zbl 0479.16007
[431] L. G. Chouinard, B. R. Hardie, and T. S. Shores, ?Arithmetical and semihereditary semigroup rings,? Commun. Algebra,8, No. 17, 1593?1652 (1980). · Zbl 0439.20046
[432] C. L. Chuang and P. H. Lee, ?Idempotents in simple rings,? J. Algebra,56, No. 2, 510?515 (1979). · Zbl 0403.16014
[433] V. Chukanov and T. G. Rashkova, ?On one property of noetherian rings with finite Krull dimension,? Godishn. Vissh. Uchebn. Zaved., Prilozh. Mat., 1978,14, No. 1, 17?20 (1979). · Zbl 0439.16017
[434] L. O. Chung and L. Jiang, ?Scalar central elements in an algebra over a principal ideal domain,? Acta Sci. Math.,41, Nos. 3?4, 289?293 (1979).
[435] L. O. Chung and J. Luh, ?On semicommuting automorphisms of rings,? Can. Math. Bull.,21, No. 1, 13?16 (1978). · Zbl 0381.16018
[436] L. O. Chung and J. Luh, ?Semiprime rings with nilpotent derivatives,? Can. Math. Bull.,24, No. 4, 415?421 (1981). · Zbl 0477.16016
[437] M. Cohen, ?Addendum to ?Semiprime Goldie centraliters?,? Israel J. Math.,24, No. 2, 89?93 (1976). · Zbl 0332.16004
[438] M. Cohen, ?Goldie centralizers of separable subalgebras,? Mich. Math. J.,23, No. 2, 185?191 (1976). · Zbl 0324.16005
[439] M. Cohen, ?Centralizers of algebraic elements,? Commun. Algebra,6, No.15, 1505?1519 (1978). · Zbl 0397.16036
[440] P. Cohen, P. Kohen, and A. Regev, ?Asymptotic estimates of some Sn characters and the identities of the 2{\(\times\)}2 matrices,? Commun. Algebra,10, No. 1, 71?85 (1982). · Zbl 0483.16021
[441] P. M. Cohn, ?Generalized rational identities,? in: Ring Theory, Proceedings of a Conference at Park City, Utah, 1971, Academic Press, New York (1972), pp. 107?115.
[442] P. M. Cohn, Skew Field Constructions, Carleton Mathematics Lecture Notes, No. 7, Ottawa (1973). · Zbl 0355.16009
[443] P. M. Cohn, ?Equations dans les corps gauches,? Bull. Soc. Math. Belg.,27, No. 1, 29?39 (1973). · Zbl 0355.16010
[444] P. M. Cohn, ?The Cayley-Hamilton theorem in skew fields.? Houston J. Math.,2, No. 1, 49?55 (1976). · Zbl 0318.15005
[445] P. M. Cohen, Skew Field Constructions, London Mathematics Society Lecture Note Series, No. 27 (1977).
[446] P. M. Cohn, ?The normal basis theorem for skew field extensions,? Bull. London Math. Soc.,12, No. 1, 1?3 (1980). · Zbl 0388.16017
[447] P. M. Cohn, ?On a theorem from ?Skew Field Constructions?,? Proc. Am. Math. Soc.,84, No. 1, 1?7 (1982). · Zbl 0482.16016
[448] P. M. Cohn, ?Ringe mit distributivem Faktorverband,? Abh. Braunschweig. Wiss. Ges.,33, 35?40 (1982). · Zbl 0507.16004
[449] P. M. Cohn and W. Dicks, ?On central extensions of skew fields,? J. Algebra,63, No. 1, 143?151 (1980). · Zbl 0433.16019
[450] P. Conrad, ?The hulls of semiprime rings,? Czech. Math. J.,28, No. 1, 59?86 (1978). · Zbl 0396.06006
[451] M. Contessa, ?Alcune osservazioni sugli anelli di Baer,? Ann. Univ. Ferrara,25, Sec. 7, 219?224 (1979).
[452] M. Contessa, ?On some properties of PM-rings and MP-rings,? C. R. Math. Rep. Acad. Sci. Canada,3, No. 6, 357?362 (1981). · Zbl 0472.13001
[453] W. H. Cornish, ?Amalgamating commutative regular rings,? Comment. Univ. Carol.,18, No. 3, 423?436 (1977). · Zbl 0378.16011
[454] D. F. B. della Corte, ?Sugli anelli unioni di sottogruppi multiplicativi,? Rend. Ist. Lombardo Accad. Sci. Lett., A, No. 114, 254?262 (1980).
[455] C. F. Cotti, ?Su una classe di anelli cocritici,? Riv. Mat. Univ. Parma,197, No. 3, 203?211 (1978).
[456] C. F. Cotti and M. S. Pellegrini, ?Su anelli critici e cocritici,? Mathematiche,31, No. 1, 147?155 (1976).
[457] R. C. Courter, ?Finite-dimensional right duo algebras are duo,? Proc. Am. Math. Soc.,84, No. 2, 157?161 (1982). · Zbl 0495.16013
[458] J. Cozzens and C. Faith, Simple Noetherian Rings, Cambridge University Press (1975). · Zbl 0314.16001
[459] A. Craciun, ?Auspra unor algebre reale, associative de ordin trei,? Bul. Inst. Politech. Iati,26, Sec. 1, Nos. 3?4, 27?33 (1980).
[460] J. B. Cruthirds, ?Infinite Galois theory for commutative rings,? Pac. J. Math.,64, No. 1, 107?117 (1976). · Zbl 0319.13003
[461] C. Cunkle and S. Rudeanu, ?Rings in Boolean algebras,? Discr. Math.,7, Nos. 1?2, 41?51 (1974). · Zbl 0281.06007
[462] J. Dauns, ?Noncyclic division algebras,? Math. Z.,169, No. 3, 195?204 (1979). · Zbl 0403.16019
[463] J. Dauns, A Concrete Approach to Division Rings, Heldermann Verlag, Berlin (1982). · Zbl 0486.16013
[464] A. David, ?Semigroup ideals in rings,? J. Austral. Math. Soc.,A27, No. 1, 51?58 (1979). · Zbl 0403.16021
[465] L. I. Davidov, ?Supernilpotent and under idempotent radical closures of right ideals,? Serdika B?lg. Mat. Spisanie,2, No. 4, 315?324 (1976).
[466] L. I. Davidov, ?Dual supernilpotent radical closures of right ideals,? Pliska. B?lg. Mat. Stud.,2, 61?68 (1981).
[467] J.-B. Delifer, ?Anneaux de Krull non commutatifs de Marubayashi,? C. R. Acad. Sci.,AB288, No. 19, A889-A890 (1979). · Zbl 0414.16002
[468] J.-B. Delifer and G. Maury, ?Un example de domaine de Krull non commutatif au sens de Marubayashi borné qui n’est ni noethérien, ni un R-ordre de Fossum,? Publ. Dép. Mat.,15, No. 4, 49?60 (1978). · Zbl 0433.16006
[469] J. Demetrovics, L. Hannak, and L. Rónyai, ?Prime-element algebras with transitive automorphism groups,? Roy. Soc. Can. Math. Reports,3, No. 1, 19?22 (1981). · Zbl 0456.08005
[470] L. L. Deneen, ?On the lattice of subalgebras of an algebra,? Proc. Am. Math. Soc.,86, No. 2, 189?195 (1982). · Zbl 0501.16005
[471] P. C. Desmarais and W. S. Martindale III, ?Generalized rational identities and rings with involution,? Israel J. Math.,36, No. 2, 187?192 (1980). · Zbl 0444.16007
[472] W. Dicks, ?A commutator test for two elements to generate the free algebra of rank two,? Bull. London Math. Soc.,14, No. 1, 48?51 (1982). · Zbl 0456.16002
[473] W. Dicks, ?The HNN construction for rings,? J. Algebra,81, No. 2, 434?487 (1983). · Zbl 0513.16023
[474] W. Dicks, ?Free algebras over Bezout domains are Sylvester domains,? J. Pure Appl. Algebra,27, No. 1, 15?28 (1983). · Zbl 0503.16001
[475] W. Dicks, ?A free algebra can be free as a module over a nonfree subalgebra,? Bull. London Math. Soc.,15, No. 4, 373?377 (1983). · Zbl 0491.16007
[476] W. Dicks and J. Lewin, ?A Jacobian conjecture for free associative algebras,? Commun. Algebra,10, No. 2, 1285?1306 (1982). · Zbl 0493.16005
[477] M. Ding, ?The quasi-P radical and PF radical of rings,? Acta Sci. Natur. Univ. Jilinensis, No. 4, 25?31 (1982).
[478] V. H. Dinh, ?Ober artinsche Ringe, die noethersch sind,? Publ. Math.,23, Nos. 1?2, Separatum, 23?25 (1976).
[479] V. H. Dinh, ?Ein Analogon eines Satzes von F. Szász,? Ann. Univ. Sci. Budapest, Sec. Math.,20, 43?45 (1977).
[480] V. H. Dinh, ?Über artinsche Ringe,? Math. Nachr.,86, 187?194 (1978). · Zbl 0393.16014
[481] V. H. Dinh, ?Über artinsche Ringe,? Math. Nachr.,91, 117?126 (1979). · Zbl 0428.16017
[482] V. H. Dinh, ?A note on artinian rings,? Arch. Math.,33, No. 6, 546?553 (1980). · Zbl 0413.16016
[483] V. H. Dinh, ?Some conditions for the existence of an identity in a ring,? Ann. Univ. Sci. Budapest. Sec. Math.,22?23, 87?95 (1979?1980).
[484] V. H. Dinh and A. Kertész, ?Über linksnoetersche Ringe, die linksartinsch sind,? Publ. Math.,23, Nos. 3?4, Separatum (1976).
[485] V. H. Dinh and A. Widiger, ?Über Ringe mit eingeschrtnkter Minimalbedingung höherer Stufe für Unterringe,? Beitr. Algebra Geom. Wiss. Beitr. M. Luther Univ. Halle-Wittenberg, No. 7, 7?12 (1978). · Zbl 0401.16010
[486] F. Dischinger, ?Sur les anneaux fortement ?-réguliers,? C. R. Acad. Sci.,283, No. 8, A571-A573 (1976). · Zbl 0338.16001
[487] N. Divinsky and A. Sulinski, ?Radical pairs,? Can. J. Math.,29, No. 5, 1086?1091 (1977). · Zbl 0365.16006
[488] H. Dobbertin, ?A note on semigroups of ring endomorphisms,? Algebra Univ.,9, No. 1, 99?101 (1979). · Zbl 0402.06005
[489] A. Doneddu, ?Anneaux polynomiaux à deux variables,? Rend. Circ. Mat. Palermo,28, No. 1, 80?90 (1979). · Zbl 0429.16001
[490] A. Doneddu, ?Extensions hexaphiques des corps non commutatifs,? Rend. Circ. Mat. Palermo,29, No. 3, 337?346 (1980). · Zbl 0492.16023
[491] A. Doneddu, ?Complements sur les extensions hexaphiques,? Rend. Circ. Mat. Palermo,30, No. 1, 53?62 (1981). · Zbl 0492.16024
[492] A. le Donne, ?On a question concerning countably generated z-ideals of C(X),? Proc. Am. Math. Soc.,80, No. 3, 505?510 (1980). · Zbl 0461.54012
[493] P. K. Draxl, Skew Fields, London Math. Society Lecture Note Series, No. 81 (1983).
[494] V. S. Drensky, ?Codimensions of T-ideals and Hilbert series of relatively free algebras,? Dokl. Bolg. Akad. Nauk,34, No. 9, 1201?1204 (1981).
[495] V. S. Drensky and A. K. Kasparian, ?Some polynomial identities of matrix algebras,? Dokl. Bolg. Akad. Nauk,36, No. 5, 565?568 (1983). · Zbl 0516.16011
[496] P. Dubreil, ?Fragmented rings,? Proc. R. Soc. Edinburgh,A78, Nos. 3?4, 273?283 (1978). · Zbl 0386.16002
[497] J. Duncan and I. D. Macdonald, ?Some factorable nil rings of characteristic two,? Proc. R. Soc. Edinburgh,A82, Nos. 3?4, 193?199 (1979). · Zbl 0408.16006
[498] J. L. Duret, ?Instabilité des corps formtllement réels,? Can. Math. Bull.,20, No. 3, 385?387 (1977). · Zbl 0385.03027
[499] P. Bakin and A. Sathaye, ?R-Endomorphisms of R[[X]] are essentially continuous,? Pac. J. Math.,66, No. 1, 83?87 (1976). · Zbl 0362.13010
[500] P. Eakin and A. Sathaye, ?R-Automorphisms of finite order in R[[X]],? J. Algebra,67, No. 1, 110?128 (1980). · Zbl 0472.13009
[501] A. El-Ahmar, ?Sur la noethérianité de A[x, ?, ?] lorsque A est commutatifs artinien,? Arch. Math.,32, No. 1, 13?15 (1979). · Zbl 0398.16005
[502] A. El-Ahmar, ?Sur la noethérianité de l’anneau des polynômes de Ore,? Commun. Algebra,7, No. 18, 1915?1931 (1979). · Zbl 0427.16001
[503] A. El-Ahmar, ?Anneaux de polynômes de Ore sur des anneaux de Jacobson,? Rev. Roum. Math. Pures Appl.,26, No. 10, 1277?1286 (1981).
[504] S. Elliger, ?Über die Struktur galoisscher Erweiterungen einfacher Ringe,? J. Reine Angew. Math.,290, 154?167 (1977). · Zbl 0338.16014
[505] I. Enescu, ?Auspra unei clase de algebra associative de ordin cince cu scalari reali,? Bul. Inst. Politehn. Iasi,26, See. 1, Nos. 1?2, 13?16 (1980).
[506] C. Faith, Algebra II. Ring Theory, Springer, Berlin (1976). · Zbl 0335.16002
[507] D. R. Farkas and R. L. Snider, ?Noetherian fixed rings,? Pac. J. Math.,69, No. 2, 347?353 (1977). · Zbl 0368.16015
[508] D. R. Farkas and R. L. Snider, ?Locally finite-dimensional algebras,? Proc. Am. Math. Soc.,81, No. 3, 369?372 (1981).
[509] R. Faudree, ?Locally finite and solvable subgroups of fields,? Proc. Am. Math. Soc.,22, No. 2, 407?413 (1969). · Zbl 0179.04403
[510] S. Feigelstock, ?An embedding theorem for weakly regular and fully idempotent rings,? Comment. Math. Univ. St. Pauli,27, No. 2, 101?103 (1978). · Zbl 0414.16007
[511] S. Feigelstock, ?Rings in which a power of each element is an integral multiple of the element,? Arch. Math.,32, No. 6, 551?554 (1979). · Zbl 0413.16018
[512] S. Feigelstock, ?The additive groups of local rings. I, II,? Ark. Mat.,18, No. 1, 49?51 (1980); Bull. Austral. Math. Soc,22, No. 3, 407?409 (1980). · Zbl 0444.20047
[513] B. Fein, ?Embedding rational division algebras,? Proc. Am. Math. Soc.,32, No. 2, 427?429 (1972). · Zbl 0228.16008
[514] B. Fein and M. Schacher, ?Strong crossed product division algebras,? Commun. Algebra,8, No. 5, 451?466 (1980). · Zbl 0434.16014
[515] B. Fein, M. Schacher, and A. Wadsworth, ?Division rings and the square root of -1,? J. Alebra,65, No. 2, 340?346 (1980). · Zbl 0452.16011
[516] R. B. Feinberg, ?Polynomial identities of incidence algebras,? Proc. Am. Math. Soc.,55, No. 1, 25?28 (1976).
[517] B. Felzenszwalb, ?On a result of Levitzki,? Can. Math. Bull.,21, No. 2, 241?242 (1978). · Zbl 0395.16029
[518] B. Felzenszwalb, ?Derivations in prime rings,? Proc. Am. Math. Soc.,84, No. 1, 16?20 (1982). · Zbl 0478.16029
[519] B. Felzenszwalb and A. Giambruno, ?Centralizers and multilinear polynomials in noncommutative rings,? J. London Math. Soc.,19, No. 3, 417?428 (1979). · Zbl 0397.16025
[520] B. Felzenszwalb and A. Giambruno, ?Periodic and nil polynomials in rings,? Can. Math. Bull.,23, No. 4, 473?476 (1980). · Zbl 0462.16007
[521] M. A. Ferrero, ?Galois theory by reduction to the center,? Math. Notae,25, 19?27 (1976). · Zbl 0379.16016
[522] M. A. Ferrero, ?On generalized convolution rings of arithmetic functions,? Tsukuba J. Math.,4, No. 2, 161?176 (1980). · Zbl 0468.10003
[523] M. A. Ferrero and K. Kishimoto, ?On automorphisms of skew polynomial rings of derivation type,? Math. J. Okayama Univ.,22, No. 1, 21?26 (1980). · Zbl 0437.16024
[524] M. A. Ferrero and K. Kishimoto, ?A classification of Abelian extensions of rings,? Math. J. Okayama Univ.,23, No. 2, 117?124 (1981). · Zbl 0474.16017
[525] J. L. Fischer, ?Finite principal ideal rings,? Can. Math. Bull.,19, No. 3, 277?283 (1976). · Zbl 0376.16020
[526] J. W. Fisher, ?Semiprime ideals in rings with finite group actions revisited,? in: Lecture Notes in Mathematics, Vol. 867 (1981), pp. 365?379.
[527] J. W. Fisher, M. H. Fahmy, and G. M. Hussein, ?A Galois version of a theorem of Jacobson,? Houston J. Math.,9, No. 2, 171?175 (1983).
[528] J. W. Fisher and J. Osterburg, ?Some results on rings with finite group actions,? in: Ring Theory, Proceedings of a Conference at Ohio University, 1976, New York-Basel (1977), pp. 95?111.
[529] J. W. Fisher and J. Osterburg, ?Semiprime ideals in rings with finite group actions,? J. Algebra,50, No. 2, 488?502 (1978). · Zbl 0368.16016
[530] J. W. Fisher and R. L. Snider, ?Rings generated by their units,? J. Algebra,42, No. 2, 363?368 (1976). · Zbl 0335.16014
[531] F. J. Flanigan, ?On the ideal and radical embedding of algebras. I, Extreme embeddings,? J. Algebra,50, No. 1, 153?174 (1978); II, J. Algebra,60, No. 1, 76?95 (1979). · Zbl 0378.16017
[532] C. R. Fletcher, ?Rings of small orders,? Math. Gaz.,64, No. 427, 9?22 (1980). · Zbl 0435.16010
[533] C. R. Fletcher and M. Lidster, ?Constructing a ring without unique factorization,? Math. Gaz.,62, No. 420, 104?109 (1978). · Zbl 0395.13013
[534] P. Fleury, ?On a class of idealizers,? J. Algebra,58, No. 2, 342?349 (1979). · Zbl 0415.16002
[535] N. S. Ford, ?Integral subalgebras of algebras possessing a finite automorphism group,? J. Austral. Math. Soc.,A28, No. 3, 335?349 (1979). · Zbl 0436.16029
[536] E. Formanek, ?The polynomial identities of matrices,? Contemp. Math.,13, 41?79 (1982). · Zbl 0503.16016
[537] E. Fried, ?Automorphism group of integral domains fixing a given subring,? Algebra Univ.,7, No. 3, 373?387 (1977). · Zbl 0374.13003
[538] P. A. Froeschl, ?Chained rings,? Pac. J. Math.,65, No. 1, 47?53 (1976). · Zbl 0338.13017
[539] F. Gaines, ?On simple rings with involution,? Proc. R. Irish Acad.,A76, No. 19, 191?193 (1976). · Zbl 0324.16012
[540] B. J. Gardner, ?Radicals and left ideals,? Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.,24, No. 11, 943?945 (1976(1977)).
[541] B. J. Gardner, ?Ring varieties closed under ideal sums,? Comment. Math. Univ. Carol.,18, No. 3, 569?578 (1977). · Zbl 0382.08007
[542] B. J. Gardner, ?Polynomial identities and radicals,? Compos. Math.,35, No. 3, 269?279 (1977). · Zbl 0328.16008
[543] B. J. Gardner, ?Radical properties defined locally by polynomial identities. I, II,? J. Austral. Math. Soc.,A27, No. 3, 257?273 (1979);A27, No. 3, 274?283 (1979). · Zbl 0396.17004
[544] B. J. Gardner, ?Injectives for ring monomorphisms with accessible images,? Commun. Algebra,10, No. 7, 673?694 (1982). · Zbl 0483.16023
[545] B. J. Gardner, ?Radical classes of regular rings with primitive images,? Pac. J. Math.,99, No. 2, 337?350 (1982). · Zbl 0492.16011
[546] B. J. Gardner, ?Absolute retracts, relatively injective simple objects and Brown-McCoy radicals,? Contemp. Math.,9, 277?283 (1982). · Zbl 0488.16007
[547] B. J. Gardner, ?Radical properties defined by the absence of free subobjects,? Ann. Univ. Sci. Budapest. Sec. Math.,25, 53?60 (1982). · Zbl 0519.17002
[548] B. J. Gardner and E. Ahmed, ?Costrict radical classes of associative rings,? Stud. Sci. Math. Hung.,10, Nos. 3?4, 389?395 (1975(1979)). · Zbl 0331.16006
[549] B. J. Gardner and P. N. Stewart, ?The closure of radical classes under finite subdirect products,? Compos. Math.,46, No. 2, 145?158 (1982). · Zbl 0485.16006
[550] B. J. Gardner and R. Wiegandt, ?Characterizing and constructing special radicals,? Acta Math. Acad. Sci. Hung.,40, Nos. 1?2, 73?83 (1982). · Zbl 0504.16004
[551] J.-B. Gastillon, ?Sur les algèbres A[P],? An. Acad. Brasil. Ciênc.,48, No. 4, 677?679 (1976).
[552] J. van Geel, ?A noncommutative theory for primes,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 767?781.
[553] J. van Geel, ?Primes in algebras and the arithmetic in central simple algebras,? Commun. Algebra,8, No. 11, 1015?1051 (1980). · Zbl 0432.16004
[554] J. van Geel and F. van Oystaeyen, ?About graded fields,? Proc. Kon. Ned. Akad. Wetensch.,A84, No. 3, 273?286 (1981). · Zbl 0468.16001
[555] E. R. Gentile, ?A characterization of Boolean rings,? Univ. Nac. Ingen. Inst. Mat. Purà Apl. Notas Mat.,5, 103?105 (1967).
[556] A. Giambruno, ?Periodic n-th commutators of traces in rings with involution,? Rend. Circ. Mat. Palermo,27, No. 1, 61?72 (1978). · Zbl 0415.16011
[557] A. Giambruno, ?Algebraic conditions on rings with involution,? J. Algebra,50, No. 1, 190?212 (1978). · Zbl 0373.16005
[558] A. Giambruno, ?Un theorema su anelli con involuzione,? Boll. Unione Mat. Itäl.,A16, No. 3, 625?629 (1979).
[559] A. Giambruno, ?Rings f-radical over PI-subrings,? Rend. Mat.,13, No. 1, 105?113 (1980). · Zbl 0452.16010
[560] R. Gilmer and S. McAdam, ?Ideals contracted from each extension ring,? Commun. Algebra,7, No. 3, 287?311 (1979). · Zbl 0401.13002
[561] S. Glaz, J. D. Sally, and W. V. Vasconcelos, ?Lüroth’s problem for rings,? J. Algebra,43, No. 2, 699?708 (1976). · Zbl 0339.13018
[562] L. M. Gluskin and O. Steinfeld, ?Rings (semigroups) containing minimal (0-minimal) right and left ideals,? Publ. Math.,25, Nos. 3?4, 275?280 (1978). · Zbl 0396.20044
[563] J. S. Golan, ?Two sheaf constructions for noncommutative rings,? Houston J. Math.,6, No. 1, 59?66 (1980). · Zbl 0435.16014
[564] A. Goldie, ?Azumaya algebras and rings with polynomial identity. Addendum,? Math. Proc. Cambridge Phil. Soc.,80, No. 2, 383?384 (1976). · Zbl 0332.16009
[565] A. Goldie, ?A survey of progress in noncommutatlve Noetherian rings,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 61?79.
[566] A. Goldie, ?The reduced range in Noetherian rings,? in: Lecture Notes in Mathematics, Vol. 867 (1981), pp. 396?405.
[567] B. Goldston and A. C. Mewborn, ?A structure sheaf for a noncommutative Noetherian ring,? J. Algebra,47, No. 1, 18?28 (1977). · Zbl 0364.16001
[568] S. W. Golomb, ?One-sided operators in rings,? UMAR J.,2, No. 3, 79?96 (1981).
[569] I. Z. Golubchik and A. Mikhalev, ?A note on varieties of semiprime rings with semigroup identities,? J. Algebra,54, No. 1, 42?45 (1978). · Zbl 0389.16006
[570] S. Gonzalez-Jiménez, ?Sobre el anulador de un algebra,? Rev. Acad. Sci. Exactas. Fis. Quim. Natur. Zaragoza,36, No. 2a, 47?52 (1981).
[571] E. G. Goodaire, ?Algebras with a diagonable subspace whose centralizer satisfies a polynomial identity,? Can. J. Math.,29, No. 2, 277?283 (1977). · Zbl 0335.16015
[572] K. R. Goodearl, ?Algebraic representations of Choquet Simplexes,? J. Pure Appl. Algebra,11, Nos. 1?3, 111?130 (1977). · Zbl 0372.16009
[573] K. R. Goodearl, ?Simple Noetherian rings ? Zalesskii ? Neroslavskii examples,? in: Lecture Notes in Mathematics, Vol. 734 (1979), pp. 118?130. · Zbl 0412.16007
[574] K. R. Goodearl, ?Extensions of simple by simple unit-regular rings,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 42?58.
[575] K. R. Goodearl, ?Von Neumann regular rings: connections with functional analysis,? Bull. Am. Math. Soc.,4, No. 2, 125?134 (1981). · Zbl 0467.16020
[576] K. R. Goodearl, ?Directly finite aleph-nought-continuous regular rings,? Pac. J. Math.,100, No. 1, 105?122 (1982). · Zbl 0453.16007
[577] K. R. Goodearl, ?Metrically complete regular rings,? Trans. Am. Math. Soc.,272, No. 1, 275?310 (1982). · Zbl 0494.16007
[578] K. R. Goodearl and D. E. Handelman, ?Rank function and K0 of regular rings,? J. Pure Appl. Algebra,7, 195?216 (1976). · Zbl 0321.16009
[579] K. R. Goodearl and D. B. Handelman, ?Homogenization of regular rings of bounded index,? Pac. J. Math.,84, No. 1, 63?78 (1979). · Zbl 0388.16012
[580] K. R. Goodearl, D. B. Handelman, and J. W. Lawrence, Affine Representations of Grothendieck Groups and Applications of Grothendieck Groups to Rickart C* -Algebras and ?0-Continuous Regular Rings, Am. Math. Soc, Providence, Rhode Island (1980). · Zbl 0435.16005
[581] K. R. Goodearl and T. H. Lenagan, ?Krull dimension of differential operator rings. III, Noncommutative coefficients,? Trans. Am. Math. Soc.,271, No. 2, 833?859 (1983). · Zbl 0529.16001
[582] K. R. Goodearl and R. B. Warfield Jr., ?Primitivity in differential operator rings,? Math. Z.,180, No. 4, 503?523 (1982). · Zbl 0495.16002
[583] K. R. Goodearl and R. B. Warfield Jr., ?Krull dimension of differential operator rings,? Proc. London Math. Soc.,45, No. 1, 49?70 (1982). · Zbl 0493.16004
[584] J.-M. Goursaud, J. Osterburg, J.-L. Pascaud, and J. Valette,? Points fixes des anneaux réguliers auto-injectifs à gauche,? Commun. Algebra,9, No. 13, 1343?1394 (1981). · Zbl 0468.16026
[585] J.-M. Goursaud, J.-L. Pascaud, and J. Valette, ?Sur les travaux de V. K. Kharchenko,? in: Lecture Notes in Mathematics, Vol. 924 (1982), pp. 322?355.
[586] G. R. Greenfield, ?A note on subnormal subgroups of division algebras,? Can. J. Math.,30, No. 1, 161?163 (1978). · Zbl 0335.16017
[587] N. J. Groenewald, ?On the Brown-McCoy radical of group rings,? Publ. Inst. Math.,27, 57?59 (1980). · Zbl 0457.16004
[588] N. Gupta and F. Levin, ?On the Lie ideals of a ring,? J. Algebra,81, No. 1, 225?231 (1983). · Zbl 0514.16024
[589] V. Gupta, ?Weakly ?-regular rings and group rings,? Math. J. Okayama Univ.,19, No. 2, 123?127 (1977). · Zbl 0371.16009
[590] R. M. Guralnick, I. M. Isaacs, and D. M. Passman, ?Nonexistence of partial traces for group actions,? Rocky Mount. J. Math.,11, No. 3, 395?405 (1981). · Zbl 0474.16027
[591] A. Haghany, ?Reflexive ideals in simple ore extensions,? J. London Math. Soc.,16, No. 3, 429?436 (1977). · Zbl 0371.13016
[592] A. Haghany and B. Sarath, ?A formula on the Krull-dimensions of Noetherian semiprime algebras,? Bull. Iran. Math. Soc.,8, No. 2, 109?113 (1981). · Zbl 0491.16008
[593] A. Haghany and B. Sarath, ?Krull dimension in some Noetherian rings,? Proc Am. Math. Soc.,83, No. 1, 1?7 (1981). · Zbl 0491.16008
[594] D. E. Haile, ?On central simple algebras of given exponent,? J. Algebra,57, No. 2, 449?465 (1979); II, J. Algebra,66, No. 1, 205?219 (1980). · Zbl 0408.16016
[595] D. Haines, ?Injective objects of the category of p-rings,? Proc. Am. Math. Soc.,42, No. 1, 57?60 (1974). · Zbl 0251.06027
[596] C. R. Hajarnavis and N. C. Norton, ?The one-and-a-half generator property in a Noetherian ring,? Commun. Algebra,9, No. 4, 381?396 (1981). · Zbl 0453.16003
[597] C. R. Hajarnavis and J. C. Robson, ?Decomposition of maximal orders,? Bull. London Math. Soc.,15, No. 2, 123?125 (1983). · Zbl 0491.16012
[598] P. Halpin, ?Some Poincaré series related to identities of 2{\(\times\)}2-matrices,? Pac. J. Math.,107, No. 1, 107?115 (1983). · Zbl 0519.16013
[599] D. Handelman, ?Representing rank complete continuous rings,? Can. J. Math.,28, No. 6, 1320?1331 (1976). · Zbl 0357.16010
[600] D. Handelman, ?Completions of rank rings,? Can. Math. Bull.,20, No. 2, 199?205 (1977). · Zbl 0368.16005
[601] D. Handelman, ?Prüfer domains and Baer rings,? Arch. Math.,29, No. 3, 241?251 (1977). · Zbl 0374.13014
[602] D. Handelman, ?Coordinatization applied to finite Baer *-rings,? Trans. Am. Math. Soc.,235, 1?34 (1978). · Zbl 0369.46053
[603] D. Handelman, ?A short proof the Dawkins-Halperin theorem,? Proc. Am. Math. Soc.,68, No. 3, 387?389 (1978). · Zbl 0394.16016
[604] D. Handelman, D. Higgs, and J. Lawrence, ?Directed abelian groups, countably continuous rings, and Rickart C* -algebras,? J. London Math. Soc.,21, No. 2, 193?202 (1980). · Zbl 0449.06013
[605] D. Handelman and J. Lawrence, ?Lower K-theory, regular rings and operator algebras. A survey,? in: Lecture Notes in Mathematics, Vol. 734 (1979), pp. 158?173. · Zbl 0408.16013
[606] D. Handelman and R. Raphael, ?Regular Schur rings,? Arch. Math.,31, No. 4, 332?338 (1978). · Zbl 0399.16008
[607] D. Handelman and G. Renault, ?Actions of finite groups on self-injective rings,? Pac. J. Math.,89, No. 1, 69?80 (1980). · Zbl 0449.16009
[608] J. Hannah, ?Homogenization of regular rings of bounded index. II,? Pac. J. Math.,94, No. 1, 107?112 (1981). · Zbl 0466.16011
[609] J. Hannah, ?Quotient rings of semiprime rings with bounded index,? Glasgow Math. J.,23, No. 1, 53?64 (1982). · Zbl 0472.16002
[610] J. Hannah, J. S. Richardson, and J. Zeleznikow, ?Completely semisimple ring semigroups,? J. Austral. Math. Soc.,A30, No. 2, 150?156 (1980). · Zbl 0455.20051
[611] F. Hansen, ?The unity in rings with Gabriel and Krull dimension,? Proc. Am. Math. Soc.,55, No. 2, 281?286 (1976). · Zbl 0341.16013
[612] D. Happel, ?Klassifikationstheorie endlich-dimensionaler Algebren in der Zeit von 1880 bis 1920,? Enseign. Math.,26, Nos. 1?2, 91?102 (1980).
[613] M. Haque, ?Anneaux fidelement representés sur leur socle droit,? Commun. Algebra,10, No. 10, 1027?1072 (1982). · Zbl 0495.16012
[614] V. K. Harchenko, T. J. Laffey, and J. Zemànek, ?A characterization of central idempotents,? Bull. Acad. Pol. Sci. Ser. Sci. Math.,29, Nos. 1?2, 43?46 (1981).
[615] R. Hart, ?Invertible 2{\(\times\)}2 matrices over skew polynomial rings,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 59?62. · Zbl 0443.16002
[616] R. E. Hartwig, ?A note on the existence of inner and outer inverses,? Math. Jpn.,23, No. 4, 339?343 (1978). · Zbl 0396.16006
[617] R. E. Hartwig, ?How to partially order regular elements,? Math. Jpn.,25, No. 1, 1?13 (1980). · Zbl 0442.06006
[618] R. E. Hartwig, ?On a theorem of Flanders,? Proc. Am. Math. Soc.,85, No. 3, 310?312 (1982).
[619] R. B. Hartwig and J. Luh, ?On finite regular rings,? Pac. J. Math.,69, No. 1, 73?96 (1977). · Zbl 0326.16012
[620] R. E. Hartwig and J. Luh, ?A note on group structure of unit regular ring elements,? Pac. J. Math.,71, No. 2, 449?461 (1977). · Zbl 0355.16005
[621] R. E. Hartwig and J. M. Shoaf, ?Invariance, group inverses and parallel sums,? Rev. Roum. Math. Pures Appl.,25, No. 1, 33?42 (1980). · Zbl 0432.16009
[622] C. Hatvany, ?Sectional representations of rings,? in: Lucr. Coloc. Nat. Geom. Topol., Busteni, June 27?30, 1981, Bucuresti (1983), pp. 145?159.
[623] G. Hauger, ?Einfache Derivationspolynom Ringe,? Arch. Math.,29, No. 5, 491?496 (1977). · Zbl 0385.16014
[624] A. G. Heinicke and J. C. Robson, ?Normalizing extensions: prime ideals and incomparability,? J. Algebra,72, 237?268 (1981). · Zbl 0471.16018
[625] M. Henriksen, ?Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal,? Port. Math.,36, Nos. 3?4, 257?259 (1977). · Zbl 0448.13002
[626] M. Henriksen and F. A. Smith, ?Sums of z-ideals and semiprime ideals,? in: General Topology and Related Modern Analysis and Algebra, No. 5, Berlin (1983), pp. 272?278.
[627] I. N. Herstein, ?Invariant subrings of a certain kind,? Israel J. Math.,26, No. 2, 205?208 (1977). · Zbl 0343.16006
[628] I. N. Herstein, ?A remark on division rings with involution,? Indian J. Pure Appl. Math.,9, No. 3, 267?269 (1978).
[629] I. N. Herstein, ?A note on derivations,? Can. Math. Bull.,21, No. 3, 369?370 (1978); II, Can. Math. Bull.,22, No. 4, 509?511 (1979). · Zbl 0412.16018
[630] I. N. Herstein, ?Multiplicative commutators in division rings. I,? Israel J. Math.,31, No. 2, 180?188 (1978); II, Rend. Circ. Mat. Palermo,29, No. 3, 485?489 (1980). · Zbl 0394.16015
[631] I. N. Herstein, ?Centerlike elements in prime rings,? J. Algebra,60, No. 2, 567?574 (1979). · Zbl 0436.16014
[632] I. N. Herstein, ?A theorem on derivations of prime rings with involution,? Can. J. Math.,34, No. 2, 356?369 (1982). · Zbl 0495.16007
[633] I. N. Herstein, ?Derivation of prime rings having power central values,? Contemp. Math.,13, 163?171 (1982). · Zbl 0503.16002
[634] I. N. Herstein, ?A theorem on invariant subrings,? J. Algebra,83, No. 1, 26?32 (1983). · Zbl 0514.16001
[635] I. N. Herstein and L. W. Small, ?Some comments on prime rings,? J. Algebra,60, No. 1, 223?228 (1979). · Zbl 0446.16004
[636] G. A. Heyman, T. L. Jenkins, and H. J. le Roux, ?Variations on almost nilpotent rings, their radicals and partitions,? Acta Math. Acad. Sci. Hung.,39, Nos. 1?3, 11?15 (1982). · Zbl 0441.16006
[637] G. A. Heyman and C. Roos, ?Essential extensions in radical theory for rings,? J. Austral. Math. Soc.,23, 340?347 (1977). · Zbl 0375.16008
[638] G. A. Heyman and H. J. le Roux, ?On upper and complementary radicals,? Math. Jpn.,25, No. 3, 327?332 (1980). · Zbl 0453.16005
[639] Y. Hirano, ?Some studies on strongly ?-regular rings,? Math. J. Okayama Univ.,20, No. 2, 141?149 (1978). · Zbl 0394.16011
[640] Y. Hirano, ?On fully right idempotent rings and direct sums of simple rings,? Math. J. Okayama Univ.,22, No. 1, 39?43 (1980). · Zbl 0434.16011
[641] Y. Hirano and H. Tominaga, ?On rings whose nonconstant semigroup endomorphisms are ring endomorphisms,? Math. J. Okayama Univ.,23, No. 1, 13?16 (1981). · Zbl 0472.16015
[642] Y. Hirano and H. Tominaga, ?Finite rings in which X?Xn is a ring endomorphism,? Math. Jpn.,26, No. 6, 633?634 (1981). · Zbl 0509.16011
[643] Y. Hirano and H. Tominaga, ?Some remarks on bisimple rings,? Math. J. Okayama Univ.,24, No. 1, 15?19 (1982). · Zbl 0488.16006
[644] K. Hirata, ?Some remarks on separable extensions,? Hokkaido Math. J.,11, No. 1, 35?38 (1982). · Zbl 0491.16010
[645] R. A. Hirschfeld, ?A Mazur-Gelfand theorem for generalized division algebras,? Bull. Acad. Polon. Sci.,27, No. 10, 763?770 (1979). · Zbl 0479.16006
[646] K. J. Ho, ?On isomorphisms of power series rings,? Arch. Math.,37, No. 4, 330?334 (1981).
[647] A. Holleman, ?Inseparable algebras,? J. Algebra,46, No. 2, 415?429 (1977). · Zbl 0369.13003
[648] M. Hongan and H. Tominaga, ?Note on fully idempotent ideals and s-unital ideals,? Math. J. Okayama Univ.,18, No. 2, 135?138 (1976). · Zbl 0335.16021
[649] A. Hudry, ?Sur la théorie des ideaux dans les anneaux premiers à identité polynômiale,? Arch. Math.,31, No. 5, 443?450 (1979). · Zbl 0388.16013
[650] T. T. Hué and F. A. Szasz, ?A sufficient covering condition for a left duo ring to be nilpotent,? Math. Sem. Notes Kobe Univ.,7, No. 1, 179?182 (1979).
[651] T. T. Hué and F. A. Szasz, ?On the homomorphic closure of some semisimple classes,? Math. Sem. Notes Kobe Univ.,7, No. 2, 287?290 (1979).
[652] W. Humpert, ?Ringe mit dichtem Quasizentrum,? Arch. Math.,28, No. 4, 387?392 (1977). · Zbl 0351.16015
[653] W. Humpert, ?Ringe mit dichtem Rechtsquasizentrum,? Math. Nachr.,83, 287?294 (1978). · Zbl 0402.16025
[654] S. Ikehata, ?On separable polynomials and Frobenius polynomials in skew polynomial rings,? Math. J. Okayama Univ.,22, No. 2, 115?129 (1980); II, Math. J. Okayama Univ.,25, No. 1, 23?28 (1983). · Zbl 0449.16003
[655] S. Ikehata, ?Azumaya algebras and skew polynomial rings,? Math. J. Okayama Univ.,23, No. 1, 19?32 (1981). · Zbl 0499.16005
[656] S. Ikehata, ?Note on Azumaya algebras and H-separable extensions,? Math. J. Okayama Univ.,23, No. 1, 17?18 (1981). · Zbl 0475.16003
[657] S. Ikehata, ?A note on separable polynomials in skew polynomial rings of derivation type,? Math. J. Okayama Univ.,22, No. 1, 59?60 (1982).
[658] Y. Ilamed, ?On identities for matrix rings and polynomials orthogonal to their arguments,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 81?86.
[659] Y. Ilamed, ?On identities for associative rings,? in: Research Lab. Annual Report, 1978?1979, Tel-Aviv (1980), pp. 24?25.
[660] Y. Ilamed, ?On central polynomials and algebraic algebras,? in: Lecture Notes in Mathematics, Vol. 951 (1982), pp. 88?93. · Zbl 0488.16014
[661] R. A. Indik, ?A PI-algebra which is not PI when inverse is adjoined,? Proc. Am. Math. Soc.,76, No. 1, 11?13 (1979). · Zbl 0415.16015
[662] R. S. Irving, ?Prime ideals of Ore extensions over commutative rings,? J. Algebra,56, No. 2, 315?342 (1979); II, J. Algebra,58, No. 2, 399?423 (1979). · Zbl 0399.16015
[663] R. S. Irving, ?On the primitivity of certain Ore extensions,? Math. Ann.,242, No. 2, 177?192 (1979). · Zbl 0393.16006
[664] R. S. Irving, ?Primitive ideals of certain noetherian algebras,? Math. Z.,169, No. 1, 77?92 (1979). · Zbl 0403.16015
[665] R. S. Irving, ?Affine PI-algebras not embeddable in matrix rings,? J. Algebra,82, No. 1, 94?101 (1983). · Zbl 0508.16015
[666] J. Isbell, ?Zero sets of polynomials in finite rings,? Aequat. Math.,23, No. 1, 76?79 (1981). · Zbl 0517.16016
[667] Y. Ishibashi, ?On the coefficient ring in a formal power series ring,? Bull. Fukuoka Univ. Ed. III,26, 13?19 (1976). · Zbl 0351.13004
[668] Y. Ishibashi, ?On isomorphic power series rings,? Osaka J. Math.,13, No. 2, 419?430 (1976). · Zbl 0345.13020
[669] A. A. Iskander, ?The radical in ring varieties,? Acta Sci. Math.,39, Nos. 3?4, 291?301 (1977). · Zbl 0375.08007
[670] A. A. Iskander, ?Definability in the lattice of ring varieties,? Pac. J. Math.,76, No. 1, 61?67 (1978). · Zbl 0403.08005
[671] D. R. Jackett, ?The additive group of a regular ring,? Period. Math. Hung.,12, No. 3, 221?227 (1981). · Zbl 0475.20048
[672] N. Jacobson, ?Some recent developments in the theory of algebras with polynomial identities,? in: Lecture Notes in Mathematics, Vol. 697 (1978), pp. 8?46.
[673] M. Jaegermann, ?Normal radicals,? Fund. Math.,95, No. 3, 147?155 (1977). · Zbl 0354.16002
[674] M. Jaegermann and A. D. Sands, ?On normal radicals, A-radicals, and N-radicals,? J. Algebra,50, No. 2, 337?349 (1978). · Zbl 0354.16003
[675] G. J. Janusz, ?Automorphism groups of simple algebras and group algebras,? in: Representation Theory of Algebras, Proceedings of a Philadelphia Conference, New York-Basel (1978), pp. 381?388.
[676] A. V. Jategaonkar, ?Noetherian bimodules, primary decomposition, and Jacobson’s conjecture,? J. Algebra,71, No. 2, 379?400 (1981). · Zbl 0478.16011
[677] A. V. Jategaonkar, ?Relative Krull dimension and prime ideals in right noetherian rings: an addendum,? Commun. Algebra,10, No. 4, 361?366 (1982). · Zbl 0529.16011
[678] T. L. Jenkins and H. J. le Roux, ?Essential ideals, homomorphically closed classes and their radicals,? J. Austral. Math. Soc.,A33, No. 3, 356?363 (1982). · Zbl 0501.16009
[679] E. Jespers, ?On geometrical ?-Krull rings,? Commun. Algebra,11, No. 7, 771?792 (1983).
[680] E. Jespers, L. Le Bruyn, and P. Wauters, ??-Krull rings,? Commun. Algebra,10, No. 17, 1801?1818 (1982). · Zbl 0508.16004
[681] B. Johns, ?Left identities in Noetherian rings,? Bull. Acad. Pol. Sci. Math. Astron. Phys.,26, Nos. 9?10, 781?782 (1978). · Zbl 0418.16011
[682] B. Johns, ?Chain conditions and nilideals,? J. Algebra,73, No. 2, 287?294 (1981). · Zbl 0469.16009
[683] S. Jondrup, ?Hereditary PI-algebras,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 63?75.
[684] S. Jondrup, ?On the centre of a hereditary PI-algebra,? Commun. Algebra,9, No. 16, 1673?1679 (1981). · Zbl 0473.16015
[685] T. U. Jooste, ?Primitive derivations in free associative algebras,? Math. Z.,164, No. 1, 15?23 (1978). · Zbl 0373.16001
[686] T. U. Jooste, ?On (?, ?)-derivations in free power series rings,? Proc. London Math. Soc.,40, No. 1, 53?71 (1980). · Zbl 0447.13001
[687] C. R. Jordan and D. A. Jordan, ?A note on semiprimitivity of Ore extensions,? Commun. Algebra,4, No. 7, 647?656 (1976). · Zbl 0328.16001
[688] D. A. Jordan, ?Primitive Ore extensions,? Glasgow Math. J.,18, No. 1, 93?97 (1977). · Zbl 0347.16020
[689] D. A. Jordan, ?Primitive skew Laurent polynomial rings,? Glasgow Math. J.,19, No. 1, 79?85 (1978). · Zbl 0374.16004
[690] J. Kado, ?On ?0-Continuous Regular Rings-continuous regular rings,? in: Proceedings of the 14th Symposium on Ring Theory, Hatsumoto (1981), pp. 99?108. · Zbl 0478.16008
[691] P. A. Kaenel, ?Generators of principal left ideals in a noncommutative algebra,? Rocky Mount. J. Math.,11, No. 1, 27?30 (1981). · Zbl 0468.16003
[692] I. Kaplansky, ?Jacobson’s lemma revisited,? J. Algebra,62, No. 2, 473?476 (1980). · Zbl 0425.16020
[693] O. A. S. Karamzadeh and M. Motamedi, ?A note on rings in which every maximal ideal is generated by a central idempotent,? Proc. Jpn. Acad.,A58, No. 3, 124?125 (1982). · Zbl 0511.16006
[694] H. Kautschitsch, ?Über Vollideale in Potenzreihenringen,? Period. Math. Hung.,7, No. 2, 141?152 (1976). · Zbl 0364.13012
[695] H. Kautschitsch, ?Zur Theorie des Vollideale in Ringen formaler Potenzreihen,? Glas. Mat., Ser. 3,11, No. 2, 209?215 (1976). · Zbl 0364.13013
[696] H. Kautschitsch, ?Kompositionsideale in Ringen formaler Potenzreihen,? Math. Slovaca (CSSR),29, No. 1, 49?56 (1979). · Zbl 0405.13006
[697] A. Kaya and C. Koc, ?Semicentralizing automorphisms of rings,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 53?55 (1981). · Zbl 0438.16028
[698] R. E. Kennedy, ?Krull rings,? Pac. J. Math.,89, No. 1, 131?136 (1980). · Zbl 0402.13012
[699] J. F. Kennison, ?Integral domain type representations in sheaves and other topoi,? Math. Z.,151, No. 1, 35?56 (1976). · Zbl 0331.18011
[700] J. W. Kerr, ?The power series ring over an Ore domain need not be Ore,? J. Algebra,75, No. 1, 175?177 (1982). · Zbl 0486.16003
[701] T. P. Kezlan, ?On transposes of nilpotent matrices over arbitrary rings,? J. Austral. Math. Soc.,A23, No. 3, 366?370 (1977). · Zbl 0376.16006
[702] R. R. Khazal, ?Multiplicative periodicity in rings,? Acta Sci. Math.,41, Nos. 1?2, 133?136 (1979). · Zbl 0377.16009
[703] K. H. Kim, L. Makar-Limanov, J. Neggers, and F. W. Roush, ?Graph algebras,? J. Algebra,64, No. 1, 46?51 (1980). · Zbl 0431.05023
[704] K. H. Kim and F. W. Roush, ?Regular rings and distributive lattices,? Commun. Algebra,8, No. 13, 1283?1290 (1980). · Zbl 0437.16007
[705] B. B. Kirkman and J. Kuzmanovich, ?Hereditary finitely generated algebras satisfying a polynomial identity,? Proc. Am. Math. Soc.,83, No. 3, 461?466 (1981). · Zbl 0478.16001
[706] K. Kishimoto, ?A classification of free quadratic extensions of rings,? Math. J. Okayama Univ.,18, No. 2, 139?148 (1976). · Zbl 0337.16011
[707] K. Kishimoto, ?A classification of free extensions of rings of automorphism type and derivation type,? Math. J. Okayama Univ.,19, No. 2, 163?169 (1977). · Zbl 0369.16023
[708] K. Kishimoto, ?A note on submodules of a Galois extension of a ring with a cyclic Galois group of order pol,? J. Fac. Sci. Shinshu Univ.,12, No. 1, 37?40 (1977). · Zbl 0385.16011
[709] E. W. Kiss, ?On modular right ideals of a ring,? Acta Math. Acad. Sci. Hung.,30, Nos. 3?4, 303?306 (1977). · Zbl 0368.16012
[710] B. W. Kiss, ?Über das Linkspseudozentrum eines Ringes,? Mathematica (RSR),20, No. 1, 21?24 (1978). · Zbl 0407.16007
[711] E. W. Kiss and L. Ronyai, ?On rings having a special type of subring lattice,? Acta Math. Acad. Sci. Hung.,37, Nos. 1?3, 223?234 (1981). · Zbl 0424.16011
[712] A. Klein, ?T-Ideals and c-ideals,? Proc. Edinburgh Math. Soc.,22, No. 2, 87?89 (1979). · Zbl 0416.16001
[713] A. Klein, ?Some ring-theoretic properties implied by embeddability in fields,? J. Algebra,66, No. 1, 147?155 (1980). · Zbl 0444.16009
[714] A. Klein, ?A new proof of a result of Levitzki,? Proc. Am. Math. Soc.,81, No. 1, 8 (1981). · Zbl 0475.16005
[715] A. Klein, ?Solvable groups of unipotent elements in a ring,? Can. Math. Bull.,25, No. 2, 187?190 (1982). · Zbl 0438.16002
[716] A. Klein, ?Rings with bounded index of nilpotence,? Contemp. Math.,13, 151?154 (1982). · Zbl 0503.16006
[717] M. Klemm, ?Über der Vertauschungsring von Permutationsgruppen,? Commun. Algebra,5, No. 3, 305?318 (1977). · Zbl 0361.20004
[718] H. Komatsu, ?On inner (?, ?)-derivations of simple rings,? Math. J. Okayama Univ.,23, No. 1, 33?36 (1981). · Zbl 0476.16020
[719] H. Komatsu, ?On a theorem of M. S. Putcha and A. Yaqub,? Math. J. Okayama Univ.,24, No. 1, 21?23 (1982).
[720] H. Komatsu, ?On the equational definability of addition in rings,? Math. J. Okayama Univ.,24, No. 2, 133?136 (1982). · Zbl 0507.16015
[721] H. Komatsu and T. Matsuyama, ?A characterization of boolean rings,? Math. Jpn.,25, No. 5, 591?592 (1980). · Zbl 0457.16011
[722] H. Komatsu and H. Tominaga, ?On the existence of identities in ideals and subrings,? Math. J. Okayama Univ.,23, No. 2, 153?162 (1981). · Zbl 0507.16013
[723] Y. Komori, ?A relation between strongly regular rings and pseudofields,? Rep. Fac. Sci. Shizuoka Univ.,11, 23?24 (1976).
[724] H. Korolczuk, ?A note on the lattice of special radicals,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,29, Nos. 3?4, 103?104 (1981). · Zbl 0468.16012
[725] A. Kovacs, ?On the nonexistence of hypercommuting polynomials,? Proc. Am. Math. Soc.,66, No. 2, 241?246 (1977). · Zbl 0376.16016
[726] A. Kovacs, ?On derivations in prime rings and a question of Herstein,? Can. Math. Bull.,22, No. 3, 339?344 (1979). · Zbl 0436.16015
[727] G. Krause, ?Middle annihilators in noetherian rings,? Commun. Algebra,8, No. 8, 781?791 (1980). · Zbl 0429.16013
[728] P. H. Krauss and D. M. Clark, Global Subdirect Products, Memoirs of the American Mathematical Society, No. 210 (1979). · Zbl 0421.08001
[729] T. Kreid, ?The theorem about inversion in the generalized incidence algebra,? Demonstr. Math.,15, No. 1, 181?187 (1982). · Zbl 0511.06003
[730] J. Krempa, ?On semisimplicity of tensor products,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 105?122.
[731] J. Krempa, ?On Passman’s problem concerning nilpotent free algebras,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,27, No. 9, 645?648 (1979). · Zbl 0447.16002
[732] J. Krempa and D. Niewieczerzal, ?Rings in which annihilators are ideals and their applications to semigroup rings,? Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,25, No. 9, 851?856 (1979). · Zbl 0345.16017
[733] J. Krempa and J. Okninski, ?Semilocal, semiperfect and perfect tensor products,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,28, Nos. 5?6, 249?256 (1980). · Zbl 0465.16010
[734] K. Kubota, ?A note on radical extensions of rings,? Mem. Def. Acad. Jpn.,16, No. 3, 75?80 (1976). · Zbl 0369.13002
[735] J. Kühner, ?Über Separabilität und Automorphismengruppen kommutativer Ringe,? Arch. Math.,28, No. 3, 238?252 (1977). · Zbl 0355.13001
[736] S. Kurata, ?A note on a generalization of prime ideals,? Proc. Jpn. Acad.,A54, No. 2, 29?31 (1978). · Zbl 0395.16031
[737] T. J. Laffey, ?On the structure of algebraic algebras,? Pac. J. Math.,62, No. 2, 461?471 (1976). · Zbl 0313.16022
[738] T. J. Laffey, ?Commutative subrings of periodic rings,? Math. Scand.,39, No. 2, 161?166 (1976). · Zbl 0344.16023
[739] T. J. Laffey, ?Subfields of matrix rings,? Arch. Math.,32, No. 6, 569?571 (1979). · Zbl 0422.16011
[740] T. J. Laffey, ?Algebras generated by two idempotents,? Linear Algebra Appl.,37, 45?53 (1981). · Zbl 0459.16010
[741] T. J. Laffey, ?An example in the theory of algebras,? Rev. Roum. Math. Pures Appl.,26, No. 10, 1351?1354 (1981).
[742] T. J. Laffey and D. L. McQuillan, ?A note on subfields of matrix rings,? Linear Algebra Appl.,16, No. 1, 1?3 (1977). · Zbl 0345.16025
[743] S. Lajos, ?Characterization of certain monomial regularities of rings,? Math. Jpn.,21, No. 4, Suppl., 445?447 (1976); corrigendum, Math. Jpn.,22, No. 4, 507 (1977/78).
[744] S. Lajos and F. Szász, ?On regular rings,? Mat. Vesn.,13, No. 2, 163?165 (1976).
[745] S. Lajos and F. Szász, ?On (m,n)-ideals in associative rings,? Publ. Math.,25, Nos. 3?4, 265?273 (1978).
[746] N. Lang, ?Some generalized regular rings,? in: Algebra Symposium, Pretoria (1975), pp. 150?151.
[747] C. Lanski, ?Solvable subgroups in prime rings,? Proc. Am. Math. Soc.,82, No. 4, 533?537 (1981). · Zbl 0492.16016
[748] C. Lanski, ?Idempotent Ideals and Noetherian polynomial rings,? Can. Math. Bull.,25, No. 1, 48?53 (1982). · Zbl 0443.16012
[749] C. Lanski, R. Resco, and L. Small, ?On the primitivity of prime rings,? J. Algebra,59, No. 2, 395?398 (1979). · Zbl 0412.16002
[750] W. G. Leavitt, ?A note on upper radicals in rings,? J. Austral. Math. Soc.,22, No. 3, 264?273 (1976). · Zbl 0342.16014
[751] W. G. Leavitt, ?Ideals primary relative to a radical,? Publ. Math.,23, Nos. 3?4, Separatum, 291?298 (1976). · Zbl 0352.16001
[752] W. G. Leavitt, ?A minimally embeddable ring,? Period. Math. Hung.,12, No. 2, 129?140 (1981). · Zbl 0439.16006
[753] W. G. Leavitt and L. C. A. van Leeuwen, ?Rings isomorphic with all proper factor-rings,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 783?798. · Zbl 0427.16019
[754] W. G. Leavitt and L. C. A. van Leeuwen, ?Multiplier algebras and minimal embeddability,? Publ. Math.,29, Nos. 1?2, 95?99 (1982). · Zbl 0505.16007
[755] W. G. Leavitt and R. L. Tangeman, ?Upper*-radicals,? Math. Nachr.,83, 83?88 (1978).
[756] W. G. Leavitt and J. Watters, ?Special closure, M-radicals, and relative complements,? Acta Math., Acad. Sci. Hung.,28, Nos. 1?2, 55?67 (1976). · Zbl 0336.16012
[757] L. Le Bruyn, ?A note on maximal orders over Krull domains,? J. Pure Appl. Algebra,28, No. 3, 241?248 (1983). · Zbl 0511.16005
[758] L. C. A. van Leeuwen, ?Rings with e as a radical element,? Acta Sci. Math.,38, Nos. 1?2, 97?102 (1976). · Zbl 0328.16020
[759] L. C. A. van Leeuwen, ?A note on primitive classes of arithmetical rings,? Publ. Math.,23, Nos. 1?2, Separatum, 41?43 (1976). · Zbl 0348.16005
[760] L. C. A. van Leeuwen, ?Complements of radicals in the class of hereditarily artinian rings,? Acta Sci. Math.,39, Nos. 3?4, 313?318 (1977). · Zbl 0372.16005
[761] L. C. A. van Leeuwen, ?Upper radical constructions for associative rings,? in: Ring Theory, Proceedings of the Antwerp Conference, 1977, New York-Basel (1978), pp.147?154.
[762] L. C. A. van Leeuwen, ?Radicals and chain conditions,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 153?157. · Zbl 0443.16010
[763] L. C. A. van Leeuwen, C. Roos, and R. Wiegandt, ?Characterizations of semisimple classes,? J. Austral. Math. Soc.,23, No. 2, 172?182 (1977). · Zbl 0356.16003
[764] L. C. A. van Leeuwen and R. Wiegandt, ?Three examples concerning the lower radical construction,? Period. Math. Hung.,9, Nos. 1?2, 121?126 (1978). · Zbl 0328.16007
[765] L. C. A. van Leeuwen and R. Wiegandt, ?Constructions and compositions of radical and semisimple classes,? Ann. Univ. Sci. Budapest Sec. Math.,21, 65?77 (1978). · Zbl 0388.16005
[766] L. C. A. van Leeuwen and R. Wiegandt, ?Semisimple and torsion-free classes,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 73?81 (1981). · Zbl 0481.17002
[767] T. H. Lenagan, ?Noetherian rings with Krull dimension one,? J. London Math. Soc.,15, No. 1, 41?47 (1977). · Zbl 0358.16015
[768] T. H. Lenagan, ?On a theorem of Herstein and Small,? Commun. Algebra,9, No. 3, 267?269 (1981). · Zbl 0452.16008
[769] T. H. Lenagan, ?Gelfand-Kirillov dimension and affine PI-rings,? Commun. Algebra,10, No. 1, 87?92 (1982). · Zbl 0478.16021
[770] T. H. Lenagan and P. B. Moss, ?T-Symmetric rings,? J. London Math. Soc.,21, No. 1, 45?52 (1980). · Zbl 0438.16013
[771] V. Leron, ?Trace identities and polynomial identities of n{\(\times\)}n matrices,? J. Algebra,42, 369?377 (1976). · Zbl 0347.16011
[772] V. Leron, ?Young subgroups and polynomial identities,? J. Algebra,49, No. 1, 304?314 (1977). · Zbl 0371.20016
[773] H. J. le Roux and G. A. P. Heyman, ?A note on the lower radicals,? Publ. Math.,28, Nos. 1?2, 11?13 (1981).
[774] P. Leroux and J. Sarraillé, ?Structure of incidence algebras of graphs,? Commun. Algebra,9, No. 15, 1479?1517 (1981). · Zbl 0467.05059
[775] A. Leroy, J.-P. Tignol, and P. Van Praag, ?Sur les anneaux simples differentiels,? Commun. Algebra,10, No. 12, 1307?1314 (1982). · Zbl 0498.16029
[776] L. Lesieur, ?Conditions noethériennes dans 1’anneaux de polynômes de Ore A[X, ?, ?],? in: Lecture Notes in Mathematics, Vol., 641 (1978), pp. 220?234.
[777] L. Lesieur, ?Sur les anneaux premiers principaux à gauche,? in: Lecture Notes in Mathematics, Vol. 795 (1980), pp. 191?202. · Zbl 0428.16001
[778] P. Lestmann, ?Simple going down in PI-rings,? Proc. Am. Math. Soc.,63, No. 1, 41?45 (1977). · Zbl 0355.16007
[779] P. Lestmann, ?Going down and Spec map in PI-rings,? Commun. Algebra,6, No. 16, 1667?1691 (1978). · Zbl 0409.16018
[780] Chiu-Wen Leu, ?A note on fully right idempotent rings,? Tamkang J. Math.,7, No. 2, 201?202 (1976). · Zbl 0362.16005
[781] T. Levasseur, ?Dimensions dans les anneaux réguliers non commutatifs,? C. R. Acad. Sci.,A285, No. 10, A657-A660 (1977). · Zbl 0366.16008
[782] L. S. Levy, ?Artinian, non-Noetherian rings,? J. Algebra,47, No. 2, 276?304 (1977). · Zbl 0368.16008
[783] L. S. Levy, ?Examples of Artinian, non-Noetherian rings,? in: Ring Theory II, Proceedings of the Second Conference, University of Oklahoma, Norman, Oklahoma, 1975, New York-Basel (1977), pp. 225?236.
[784] Wen-Ching W. Li, ?Generators for the ideal of polynomial identities satisfied by 2{\(\times\)}2 matrices,? J. Algebra,74, No. 1, 246?263 (1982). · Zbl 0478.16016
[785] A. Lichtman, ?On subgroups of the multiplicative groups of skew fields,? Proc. Am. Math. Soc.,63, No. 1, 15?16 (1977). · Zbl 0352.20026
[786] A. Lichtman, ?The primitivity of free products of associative algebras,? J. Algebra,54, No. 1, 153?158 (1978). · Zbl 0393.16020
[787] A. Lichtman, ?Free subgroups of normal subgroups of the multiplicative group of skew fields,? Proc. Am. Math. Soc.,71, No. 2, 174?178 (1978). · Zbl 0394.16014
[788] A. Lichtman, ?On normal subgroups of the multiplicative group of skew fields generated by a polycyclic-by-finite group,? J. Algebra,78, No. 2, 548?577 (1982). · Zbl 0498.16016
[789] A. Lichtman, ?On residual properties of free products of algebras,? Arch. Math.,40, No. 4, 308?313 (1983). · Zbl 0502.16004
[790] D. Licoiu, ?Type fini et type dénombrable,? C. R. Acad. Sci.,AB285, No. 4, A171 (1977). · Zbl 0362.13006
[791] R. Lidl and J. Wiesenbauer, Ringtheorie und Anwendungen, Akademische Verlagsgesellschaft, Wiesbaden (1980).
[792] S. Light, ?A note on semigroups in rings,? J. Austral. Math. Soc.,A24, No. 3, 305?308 (1977).
[793] L. Lipshitz, ?The real closure of a commutative regular f-ring,? Fund. Math.,94, No. 3, 173?176 (1977). · Zbl 0359.02057
[794] C. Lofwall, ?Une algebra nilpotente dont série de Poincaré-Betti est non rationnelle,? C. R. Acad. Sci.,AB288, No. 5, A327-A330 (1979).
[795] D. Loignon, ?Existence de certains ideaux à gauche de A[Y] ? et quelques propriétés de leurs gradués associés,? Bull. Sec. Sci. CTHS,3, 125?138 (1981). · Zbl 0466.16003
[796] M. Lorenz, ?Primitive ideals in crossed products and rings with finite group actions,? Math. Z.,158, No. 3, 285?294 (1978). · Zbl 0356.16013
[797] M. Lorenz, ?The heart of prime ideals in Ore extensions,? Manuscr. Math.,28, No. 4, 293?304 (1979). · Zbl 0412.16008
[798] M. Lorenz, ?Finite normalizing extensions of rings,? Math. Z.,176, No. 4, 447?484 (1981). · Zbl 0455.16010
[799] M. Lorenz, ?On the Gelfand-Kirillov dimension of skew polynomial rings,? J. Algebra,77, No. 1, 186?188 (1982). · Zbl 0491.16004
[800] M. Lorenz and G. Michler, ?On maximal ideals in Ore extensions,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 139?151.
[801] M. Lorenz, S. Montgomery, and L. W. Small, ?Prime ideals in fixed rings,? Commun. Algebra,10, No. 5, 449?455 (1982). · Zbl 0482.16027
[802] M. Lorenz and D. S. Passman, ?Integrality and normalizing extensions of rings,? J. Algebra,61, No. 2, 289?297 (1979). · Zbl 0431.16011
[803] M. Lorenz and D. S. Passman, ?Observations on crossed products and fixed rings,? Commun. Algebra,8, No. 8, 743?779 (1980). · Zbl 0436.16028
[804] M. Lorenz and D. S. Passman, ?Two applications of Maschke’s theorem,? Commun. Algebra,8, No. 19, 1853?1866 (1980). · Zbl 0447.16007
[805] M. Lorenz and L. W. Small, ?On the Gelfand-Kirillov dimension of Noetherian PI-rings,? Contemp. Math.,13, 199?205 (1982). · Zbl 0503.16017
[806] J. Luh, ?Rings in which every proper right ideal is maximal,? Fund. Math.,91, No. 3, 183?188 (1976). · Zbl 0337.16007
[807] J. Luh, C. K. Johnson, and L. J. Chung, ?On quasi-Boolean rings and generalized quasi-Boolean rings,? Math. Jpn.,20, No. 1, 43?47 (1975). · Zbl 0342.06010
[808] D. MacHale, ?Rings that are nearly Boolean,? Proc. R. Irish Acad.,A80, No. 1, 41?46 (1980). · Zbl 0402.16027
[809] D. MacHale, ?Idempotents in finite rings,? Proc. R. Irish Acad.,A82, No. 1, 9?12 (1982).
[810] K. D. Magill, ?The semigroup of endomorphisms of a Boolean ring,? J. Austral. Math. Soc.,11, No. 4, 411?416 (1970). · Zbl 0224.06007
[811] D. Mainwaring and K. R. Pearson, ?Decomposability of finite rings,? J. Austral. Math. Soc.,A28, No. 2, 136?138 (1979). · Zbl 0422.16014
[812] P. Malcolmson, ?Determining homomorphisms to skew fields,? J. Algebra,64, No. 2, 399?413 (1980). · Zbl 0442.16015
[813] P. Malcolmson, ?On making rings weakly finite,? Proc. Am. Math. Soc.,80, No. 2, 215?218 (1980). · Zbl 0437.16019
[814] Z. Maoulaoui and A. Page, ?Automorphismes algébriques,? Commun. Algebra,10, No. 14, 1497?1515 (1982). · Zbl 0531.16023
[815] R. Markanda and J. Pascual, ?Finned rings of automorphisms of K[x, y],? Notas Mat., No. 14 (1977). · Zbl 0377.13002
[816] L. Marki, P. N. Stewart, and R. Wiegandt, ?Radicals and decomposability of semigroups and rings,? Ann. Univ. Sci. Budapest Sec. Math.,18, 27?36 (1975(1976)). · Zbl 0331.16007
[817] D. Martin, ?Détermination du rang de commutativité d’anneaux de matrices et de produits d’algèbres,? C. R. Acad. Sci.,AB284, No. 24, 1539?1541 (1977). · Zbl 0357.16013
[818] W. S. Martindale III, ?Lie and Jordan mappings in associative rings,? in: Ring Theory, Proceedings of the Ohio University Conference, 1976, New York-Basel (1977), pp. 71?84.
[819] W. S. Martindale III, ?Fixed rings of automorphisms and the Jacobson radical,? J. London Math. Soc.,17, No. 1, 42?46 (1978). · Zbl 0378.16022
[820] W. S. Martindale III, ?Generalized identities and rings with involution,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 153?167.
[821] W. S. Martindale III, ?The extended center of coproducts,? Can. Math. Bull.,25, No. 2, 245?248 (1982). · Zbl 0485.16001
[822] W. S. Martindale III, ?Lie and Jordan mappings,? Contemp. Math.,13, 173?177 (1982). · Zbl 0503.16029
[823] W. S. Martindale III and C. R. Miers, ?On the iterates of derivations of prime rings,? Pac. J. Math.,104, No. 1, 179?190 (1983). · Zbl 0507.16022
[824] G. Mason, ?Prime z-ideals of C(X) and related rings,? Can. Math. Bull.,23, No. 4, 437?443 (1980). · Zbl 0455.54010
[825] G. Mason, ?Reflexive ideals,? Commun. Algebra,9, No. 17, 1709?1724 (1981). · Zbl 0468.16024
[826] J. Matczuk, ?Central closure of semiprime tensor products,? Commun. Algebra,10, No. 3, 263?278 (1982). · Zbl 0487.16006
[827] H. Matsumura and T. Ogoma, ?Remarks on associated prime ideals,? Rend. Sem. Mat. Univ. Politecn. Torino,38, No. 2, 53?61 (1980(1981)). · Zbl 0467.13010
[828] G. Maury and J. Raynaud, Ordres Maximaux au Sens de U. Asano, Lecture Notes in Mathematics, Vol. 808 (1980).
[829] C. J. Maxson, ?On semigroups of Boolean ring endomorphisms,? Semigroup Forum,4, No. 1, 78?82 (1972). · Zbl 0262.06011
[830] C. J. Maxson, ?Rigid rings,? Proc. Edinburgh Math. Soc.,21, No. 2, 95?101 (1978). · Zbl 0395.16016
[831] J. H. Mayne, ?Centralizing automorphisms of prime rings,? Can. Math. Bull.,19, No. 1, 113?115 (1976). · Zbl 0339.16009
[832] G. Mazzola, ?The algebraic and geometric classification of associative algebras of dimension five,? Manuscr. Math.,27, No. 1, 81?101 (1979). · Zbl 0446.16033
[833] J. C. McConnell, ?On completions of noncommutative noetherian rings,? Commun. Algebra,6, No. 14, 1485?1488 (1978). · Zbl 0418.16009
[834] J. C. McConnell, ?The nullstellensatz and Jacobson properties for rings of differential operators,? J. London Math. Soc.,26, No. 1, 37?42 (1982). · Zbl 0498.16022
[835] K. R. McLean, ?Rigid Artinian rings,? Proc. Edinburgh Math. Soc.,25, No. 1, 97?99 (1982). · Zbl 0484.16007
[836] K. R. McLean, ?Principal ideal rings and separability,? Proc. London Math. Soc.,45, No. 2, 300?318 (1982). · Zbl 0507.16002
[837] R. McKenzie, ?Residually small varieties of k-algebras,? Algebra Univ.,14, No. 2, 181?196 (1982). · Zbl 0482.08009
[838] R. A. Melter, ?The number of invertible elements of a matrix ring over a finite p-ring,? Mathematics (RSR),18, No. 1, 101?102 (1976). · Zbl 0387.16008
[839] R. A. Melter and S. Rudeanu, ?Geometry of 3-rings. Lattice theory,? Coll. Math. Soc. J. Bolyai,14, 249?269 (1976). · Zbl 0371.14002
[840] P. Menal, ?On ?-regular rings whose primitive factor rings are artinian,? J. Pure Appl. Algebra,20, No. 1, 71?78 (1981). · Zbl 0457.16006
[841] P. Menal, ?On tensor products of algebras being von Neumann regular or self-injective,? Commun. Algebra,9, No. 7, 691?697 (1981). · Zbl 0456.16015
[842] P. Menal, ?On the Jacobson radical of algebraic extensions of regular algebras,? Commun. Algebra, No. 11, 1125?1135 (1982). · Zbl 0482.16006
[843] N. Mendelsohn and R. Padmanabhan, ?A single identity for Boolean groups and Boolean rings,? J. Algebra,20, No. 1, 78?82 (1972); Corrigendum, J. Algebra,22, 406 (1972). · Zbl 0226.20003
[844] Y. Miyashita, ?On skew polynomial rings,? J. Math. Soc. Jpn.,31, No. 2, 317?330 (1979). · Zbl 0397.16002
[845] Y. Miyashita, ?On a generalization of Kitamura’s theorem,? Arch. Math.,40, No, 2, 126?131 (1983). · Zbl 0502.16019
[846] R. Mollin, ?Herstein’s conjecture, automorphisms and the Schur group,? Commun. Algebra,6, No. 3, 237?248 (1978). · Zbl 0393.16015
[847] S. Montgomery, ?Centralizers of separable subalgebras,? Michigan Math. J.,22, No. 1, 15?24 (1975). · Zbl 0322.16004
[848] S. Montgomery, ?The Jacobson radical and fixed rings of automorphisms,? Commun. Algebra,4, No. 5, 459?465 (1976). · Zbl 0326.16029
[849] S. Montgomery, ?A structure theorem and a positive-definiteness condition in rings with involution,? J. Algebra,43, No. 1, 181?192 (1976). · Zbl 0341.16004
[850] S. Montgomery, ?Outer automorphisms of semiprime rings,? J. London Math. Soc.,18, No. 2, 209?220 (1978). · Zbl 0394.16025
[851] S. Montgomery, ?Automorphism groups of rings with no nilpotent elements,? J. Algebra,60, No. 1, 238?248 (1979). · Zbl 0431.16014
[852] S. Montgomery, Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Mathematics, Vol. 818 (1980). · Zbl 0449.16001
[853] S. Montgomery, ?Prime ideals in fixed rings,? Commun. Algebra,9, No. 4, 423?449 (1981). · Zbl 0453.16019
[854] S. Montgomery, ?Trace functions and affine fixed rings for groups acting on noncommutative rings,? in: Lecture Notes in Mathematics, Vol. 924 (1982), pp. 356?374.
[855] S. Montgomery, ?Von Neumann finiteness of tensor products of algebras,? Commun. Algebra,11, No. 6, 595?610 (1983). · Zbl 0488.16015
[856] S. Montgomery and L. W. Small, ?Fixed rings of Noetherian rings,? Bull. London Math. Soc.,13, No. 1, 33?38 (1981). · Zbl 0453.16021
[857] H. G. Moore and A. Yaqub, ?Equational definability of addition in certain rings,? Pac. J. Math.,74, No. 2, 407?417 (1978). · Zbl 0353.06003
[858] H. G. Moore and A. Yaqub, ?Certain generalizations of Boolean rings,? Port. Math.,38, 11?17 (1982). · Zbl 0503.16012
[859] H. G. Moore and J. Morgado, ?Some characterizations of boolean rings,? An. Acad. Brasil. Ci.,42, 641?644 (1970).
[860] K. Motose, ?On Cartan-Brauer-Hua theorem,? J. Fac Sci. Hokkaido Univ.,20, No. 1, 27?30 (1967). · Zbl 0183.03801
[861] K. Motose, ?Notes on the radical of a finite-dimensional algebra,? J. Fac. Sci. Shinshu Univ.,14, No. 2, 95?97 (1979). · Zbl 0437.16018
[862] B. Mueller, ?Rings with polynomial identities,? Monogr. Inst. Mat. UNAM, No. 4 (1977).
[863] W. Müller, ?Formal integration in composition rings,? Math. Slov. (CSSR),33, No. 1, 121?126 (1983). · Zbl 0512.12015
[864] C. J. Mulvey, ?Espaces annelés compacts,? C. R. Acad. Sci.,283, No. 5, A229-A231 (1976). · Zbl 0353.14002
[865] W. D. Munn, ?Bisimple rings,? Q. J. Math.,32, No. 126, 181?191 (1981). · Zbl 0474.16005
[866] I. Murase and H. Tominaga, ?On powers of Artinian rings without identity,? Math. J. Okayama Univ.,20, No. 2, 131?140 (1978). · Zbl 0391.16011
[867] T. Nagahara, ?On separable polynomials of degree 2 in skew polynomial rings,? Math. J. Okayama Univ.,19, No. 1, 65?95 (1976); II,21, No. 2, 167?177 (1979); III,21, No. 1, 61?64 (1980); IV,23, No. 2, 171?179 (1981). · Zbl 0355.16022
[868] T. Nagahara, ?Supplements to the previous paper ’On separable polynomials of degree 2 in skew polynomial rings’,? Math. J. Okayama Univ.,19, No. 2, 159?161 (1977). · Zbl 0369.16027
[869] T. Nagahara, ?A note on separable polynomials in skew polynomial rings of automorphism type,? Math. J. Okayama Univ.,22, No. 1, 73?76 (1980). · Zbl 0439.16002
[870] T. Nagahara, ?A semigroup of isomorphism classes of some quadratic extensions of rings,? Suri Kaiséki Kéikyusë Kokyuroku, No. 395, 18?28 (1980).
[871] T. Nagahara, ?Note on skew polynomials,? Math. J. Okayama Univ.,25, No. 1, 43?48 (1983). · Zbl 0512.16002
[872] T. Nagahara and K. Kishimoto, ?On free cyclic extensions of rings,? in: Proceedings of the 10th Symposium on Ring Theory, Matsumoto, 1977, Okayama (1978), pp. 1?25. · Zbl 0378.16018
[873] T. Nakamoto, ?Note on H-separable extensions. II,? Math. Jpn.,27, No. 1, 125?127 (1982). · Zbl 0489.16004
[874] G. Nastasescu and F. Van Oystaeyen, ?Jacobson radicals and maximal ideals of normalizing extensions applied to Z-graded rings,? Commun. Algebra,10, No. 17, 1839?1847 (1982). · Zbl 0493.16002
[875] E. Nauwelaerts, ?Localization in PI-rings,? Commun. Algebra,10, No. 4, 367?382 (1982). · Zbl 0483.16012
[876] E. Nauwelaerts and J. van Geel, ?Arithmetical Zariski central rings,? in: Lecture Notes in Mathematics, Vol. 951 (1982), pp. 132?142. · Zbl 0489.16003
[877] E. Nauwelaerts and F. van Oystaeyen, ?Zariski extensions and biregular rings,? Israel J. Math.,37, No. 4, 315?326 (1980). · Zbl 0449.16008
[878] J. Neggers, ?On rings with many endomorphisms,? Can. Math. Bull.,19, No. 2, 199?204 (1976). · Zbl 0342.16004
[879] S. Nicholas, ?Inertial subalgebras of algebras possessing finite automorphism groups,? J. Austral. Math. Soc.,A28, No. 3, 335?345 (1979). · Zbl 0436.16029
[880] W. K. Nicholson and H. J. Springer, ?Commutativity of rings with abelian or solvable units,? Proc. Am. Math. Soc.,56, 59?62 (1976). · Zbl 0328.16030
[881] W. K. Nicholson and H. J. Springer, ?Local rings with elementary Abelian units,? Can. Math. Bull.,19, No. 2, 205?208 (1976). · Zbl 0342.16007
[882] W. K. Nicholson and J. F. Watters, ?Normal radicals and normal classes of rings,? J. Algebra,59, No. 1, 7?15 (1979). · Zbl 0413.16005
[883] W. K. Nicholson and J. F. Watters, ?Normal classes of rings and tensor products,? Commun. Algebra,9, No. 3, 299?311 (1981). · Zbl 0463.16009
[884] W. K. Nicholson and J. F. Watters, ?Normal classes of prime rings determined by modules,? Proc. Am. Math. Soc.,83, No. 1, 27?30 (1981). · Zbl 0487.16005
[885] W. K. Nicholson and J. F. Watters, ?On tensor products and extended centroids,? Proc Am. Math. Soc.,88, No. 2, 215?217 (1983). · Zbl 0517.16003
[886] W. K. Nicholson, J. F. Watters, and J. M. Zelmanowitz, ?On extension of weakly primitiv rings,? Can. J. Math.,32, No. 4, 937?944 (1980). · Zbl 0449.16006
[887] D. Niewieczerzal, ?A note on rings with the annihilator condition,? Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys.,24, No. 7, 463?466 (1976).
[888] D. Niewieczerzal, ?Some examples of rings with annihilator conditions,? Bull. Acad. Pol Sci. Sér. Sci. Math. Astron. Phys.,26, No. 1, 1?5 (1978).
[889] A. Nita, ?Quelques observations sur les ultraproduits d’anneaux,? Bull. Math. Soc. Sci. Math. RSR,20, Nos. 3?4, 325?328 (1976(1977)). · Zbl 0366.13006
[890] A. Nita, ?Ultraproduse de inele care P?stereaz? propiet?tile factorilor,? Stud. Si. Cere. Mat.,31, No. 2, 209?211 (1979).
[891] A. Nita, ?Ultraproduse ale unor clase de inele,? Bul. Inst. Politechn. Ch. Cheorgiu-Dej Bucurest, No. 1, 13?17 (U2(1980)).
[892] M. Ohori, ?On finite unions of subrings,? Math. J. Okayama Univ.,19, No. 1, 47?50 (1976). · Zbl 0359.16011
[893] M. Ohori and H. Tominaga, ?A note on right locally finite simple ring extensions,? J. Fac. Sci. Shinshu Univ.,12, No. 1, 43 (1977). · Zbl 0385.16010
[894] M. Ohori and H. Tominaga, ?Characterizations of division rings. II,? J. Fac. Sci. Shinshu Univ.,15, No. 2, 79?80 (1980). · Zbl 0458.16011
[895] J. Okninski, ?On spectrally finite algebras,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,27, Nos. 7?8, 515?519 (1979(1980)). · Zbl 0442.16017
[896] S. Okubo and H. C. Myung, ?Some new classes of division algebras,? J. Algebra,67, No. 2, 479?490 (1980). · Zbl 0451.17001
[897] D. M. Olson, ?A construction of supernilpotent radical classes,? J. Austral. Math. Soc.,A33, No. 1, 86?91 (1982). · Zbl 0493.16007
[898] D. M. Olson and T. L. Jenkins, ?A note on upper radicals generated by simple rings,? Period. Math. Hung.,11, No. 1, 81?85 (1980). · Zbl 0427.16008
[899] D. M. Olson and T. L. Jenkins, ?Upper radicals and essential ideals,? J. Austral. Math. Soc.,A30, No. 4, 385?389 (1981). · Zbl 0467.16010
[900] J. B. Olsson and A. Regev, ?An application of representation theory to PI-algebras,? Proc. Am. Math. Soc.,55, No. 2, 253?257 (1976).
[901] J. B. Olsson and A. Regev, ?On the T-ideal generated by a standard identity,? Israel J. Math.,26, No. 2, 97?104 (1977). · Zbl 0341.16010
[902] J. D. O’Neill, ?Rings whose additive subgroups are subrings,? Pac J. Math.,66, No. 2, 509?522 (1976). · Zbl 0358.16016
[903] J. D. O’Neill, ?Survey of rings whose subgroups are subrings or ideals,? in: Ring Theory, Proceedings of the Ohio University Conference, 1976, New York-Basel (1977), pp. 161?167.
[904] J. D. O’Neill, ?An uncountable Noetherian ring with free additive group,? Proc. Am. Math. Soc.,66, No. 2, 205?207 (1977). · Zbl 0374.16016
[905] J. D. O’Neill, ?Rings covered by proper ideals,? Commun. Algebra,8, No. 6, 505?515 (1980).
[906] B. J. Oslowski, ?On the H- and K-radicals,? Commun. Algebra,9, No. 3, 313?322 (1981). · Zbl 0454.16002
[907] B. J. Oslowski, ?A negative answer to three questions on K-primitive rings,? Proc. Am. Math. Soc.,84, No. 1, 33?34 (1982). · Zbl 0489.16005
[908] J. Osterburg, ?Some remarks on the crossed product,? Yokohama Math. J.,24, Nos. 1?2, 57?61 (1976). · Zbl 0359.16020
[909] J. Osterburg, ?Fixed rings of simple rings,? Commun. Algebra,6, No. 17, 1741?1750 (1978). · Zbl 0391.16005
[910] J. Osterburg, ?The influence of the algebra of the group,? Commun. Algebra,7, No. 13, 1377?1396 (1979). · Zbl 0419.16019
[911] J. Osterburg, ?Central fixed rings,? J. London Math. Soc.,23, No. 2, 246?248 (1981). · Zbl 0428.16033
[912] J. Osterburg, ?A semiprime Morita context related to finite automorphism groups of rings,? Israel J. Math.,44, No. 1, 88?96 (1983). · Zbl 0513.16029
[913] F. van Oystaeyen, ?A note on graded PI-rings,? Bull. Soc Math. Belg.,A32, No. 1, 21?28 (1980). · Zbl 0485.16011
[914] F. van Oystaeyen and A. Verschoren, ?Graded PI-rings and noncommutative projective schemes,? Commun. Algebra,9, No. 2, 149?177 (1981). · Zbl 0455.16006
[915] F. van Oystaeyen and A. Verschoren, Noncommutative Algebraic Geometry, Lecture Notes in Mathematics, Vol. 887 (1981). · Zbl 0455.16006
[916] S. S. Page, ?Stable rings,? Can. Math. Bull.,23, No. 2, 173?178 (1980). · Zbl 0434.16026
[917] S. S. Page, ?Regular rings are very regular,? Can. Math. Bull.,25, No. 1, 118 (1982). · Zbl 0483.16009
[918] Z. Papp, ?Left stable left noetherian rings,? in: Lecture Notes in Mathematics, Vol. 700 (1979), pp. 228. · Zbl 1315.16004
[919] R. Pare and W. Schelter, ?Finite extensions are integral,? J. Algebra,53, No. 2, 477?479 (1978). · Zbl 0404.16011
[920] R. Parimala, ?Automorphisms of nonfree projective ideals of polynomial extensions of division rings,? Arch. Math.,38, No. 6, 531?534 (1982). · Zbl 0465.16011
[921] J. K. Park, ?Artinian skew group rings,? Proc. Am. Math. Soc.,75, No. 1, 1?7 (1979). · Zbl 0413.16001
[922] J.-L. Pascaud, ?Two results on fixed rings,? Proc Am. Math. Soc.,82, No. 4, 517?520 (1981). · Zbl 0475.16023
[923] J.-L. Pascaud, ?Actions de groupes et traces,? Commun. Algebra,10, No. 2, 1101?1117 (1982). · Zbl 0492.16027
[924] D. S. Passman, ?Fixed rings and integrality,? J. Algebra,68, No. 2, 510?519 (1981). · Zbl 0455.16016
[925] D. S. Passman, ?Prime ideals in normalizing extensions,? J. Algebra,73, No. 2, 556?572 (1981). · Zbl 0471.16019
[926] F. Pastijn, ?Biordered sets and complemented modular lattices,? Semigroup Forum,21, Nos. 2?3, 205?220 (1980). · Zbl 0449.20067
[927] K. B. Patil, ?Equivalent conditions for cancellation of graded Azumaya algebras,? Commun. Algebra,8, No. 11, 1071?1082 (1980). · Zbl 0437.16003
[928] K. R. Pearson, ?A lower bound for the degree of polynomials satisfied by matrices,? J. Austral. Math. Soc.,A27, No. 4, 430?436 (1979). · Zbl 0406.16014
[929] K. R. Pearson, ?Degree 7 monic polynomials satisfied by a 3{\(\times\)}3 matrix over a noncommutative ring,? Commun. Algebra,10, No. 19, 2043?2073 (1982). · Zbl 0517.16015
[930] K. R. Pearson, ?The Robson cubies generate all polynomials satisfied by a general 2{\(\times\)}2 matrix,? Commun. Algebra,10, No. 19, 2075?2084 (1982). · Zbl 0501.16020
[931] K. R. Pearson and W. Stephenson, ?A skew polynomial ring over a Jacobson ring need not be a Jacobson ring,? Commun. Algebra,5, No. 8, 783?794 (1977). · Zbl 0355.16020
[932] K. R. Pearson, W. Stephenson, and J. F. Watters, ?Skew polynomials and Jacobson rings,? Proc. London Math. Soc.,42, No. 3, 559?576 (1981). · Zbl 0469.16002
[933] K. R. Pearson, W. Stephenson, and J. F. Watters, ?Skew polynomials and Brown-McCoy rings,? Commun. Algebra,10, No.15, 1669?1681 (1982). · Zbl 0497.16002
[934] M. Petrich, Categories of Algebraic Systems, Vector and Projective Spaces, Semigroups, Rings and Lattices, Lecture Notes in Mathematics, Vol. 553 (1976). · Zbl 0357.18005
[935] M.-L. Pham-Pierrejean, ?Anneaux absolument plats dont le spectre a un nombre fini de points d’accumulation,? C. R. Acad. Sci.,284, No. 16, A927-A929 (1977). · Zbl 0349.13003
[936] M.-L. Pham-Pierrejean, ?Une relation d’ordre sur les anneaux absolument plats,? C. R. Acad. Sci.,286, No. 7, 317?320 (1978).
[937] R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Heidelberg-Berlin (1982).
[938] N. Popescu and C. Vraciu, ?Sur la structure des anneaux absoluments plats commutatifs,? J. Algebra,40, No. 2, 363?383 (1976). · Zbl 0351.13005
[939] N. Popescu and C. Vraciu, ?Some remarks about the regular ring associated to a commutative ring,? Rev. Roum. Math. Pures Appl.,23, No. 2, 269?271 (1978). · Zbl 0386.13001
[940] A. P. Popov, ?Some finitely based varieties of rings,? Dokl. Bolg. Akad. Nauk,32, No. 7, 855?858 (1979).
[941] A. P. Popov, ?Identities of tensor product of two copies of Grassmann algebra,? Dokl. Bolg. Akad. Nauk,34, No. 9, 1205?1208 (1981).
[942] A. Preller, ?Une catégorie duale de la catégorie des anneaux idempotents,? Publ. Dép. Math. (Lyon),3, No. 1, 26?30 (1976).
[943] N. Prijatelj, ?On regular rings. I,? Obzornik Mat.,24, No. 2, 33?41 (1977); II, Obzornik Mat.,24, No. 3, 65?68 (1977). · Zbl 0344.16009
[944] C. Procesi, ?The invariants of n{\(\times\)}n matrices,? Bull. Am. Math. Soc.,82, No. 6, 891?892 (1976). · Zbl 0342.16020
[945] C. Procesi, ?Trace identities and standard diagrams,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 191?218.
[946] C. Procesi, ?Computing with matrices,? in: Recent Trends in Mathematics, Reinhardsbrunn, Conference, Oct. 11?13, 1982, Leipzig (1983), pp. 247?250.
[947] C. Procesi and M. Schacher, ?A noncommutative real Nullstellensatz and Hilbert’s 17th problem,? Ann. Math.,104, No. 3, 395?406 (1976). · Zbl 0347.16010
[948] E. R. Puczylowski, ?Action of algebras on radical properties,? Bull. Acad. Pol. Sci. Sér. Math. Astron. Phys.,25, No. 7, 617?622 (1977). · Zbl 0362.16002
[949] E. R. Puczylowski, ?Radicals of polynomial rings, power series rings and tensor products,? Commun. Algebra,8, No. 18, 1699?1709 (1980). · Zbl 0442.16008
[950] E. R. Puczylowski, ?Remarks on stable radicals,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,28, Nos. 1?2, 11?16 (1980). · Zbl 0459.16004
[951] E. R. Puczylowski, ?On radicals of tensor products,? Bull. Acad. Pol. Sci. Sér. Sci. Math.,28, Nos. 5?6, 243?247 (1980). · Zbl 0466.16007
[952] E. R. Puczylowski, ?On unequivocal rings,? Acta Math. Acad. Sci. Hung.,36, Nos. 1?2, 57?62 (1980). · Zbl 0464.16005
[953] E. R. Puczylowski, ?Radicals of rings and their subrings,? Proc. Edinburgh Math. Soc.,24, No. 3, 209?215 (1981). · Zbl 0467.16011
[954] E. R. Puczylowski, ?Hereditariness. of strong and stable radicals,? Glasgow Math. J.,23, No. 1, 85?90 (1982). · Zbl 0472.16004
[955] E. R. Puczylowski, ?A note on hereditary radicals,? Acta Sci. Math.,44, Nos. 1?2, 133?135 (1982). · Zbl 0488.16008
[956] E. R. Puczylowski, ?Radicals of polynomial rings in noncommutative indeterminates,? Math. Z.,182, No. 1, 63?67 (1983). · Zbl 0488.16001
[957] E. R. Puczylowski, ?Nil ideals of power series rings,? J. Austral. Math. Soc.,A24, No. 3, 287?292 (1983). · Zbl 0522.16005
[958] M. S. Putcha and A. Yaqub, ?A finiteness condition for rings,? Math. Jpn.,22, No. 1, 13?20 (1977). · Zbl 0361.16006
[959] M. S. Putcha and A. Yaqub, ?Rings which are multiplicatively generated by idempotents,? Commun. Algebra,8, No. 2, 153?159 (1980). · Zbl 0424.16008
[960] H.-G. Quebbemann, ?Automorphismen und Antiautomorphismen von Tensor-algebren,? Math. Z.,158, No. 2, 195?198 (1978). · Zbl 0354.16014
[961] F. Rado, ?On the definition of skew-fields,? Arch. Math.,32, No. 5, 441?444 (1979). · Zbl 0424.16010
[962] D. F. Rall, ?A class of rings which are algebraic over the integers,? Internat. J. Math. Sci.,2, No. 4, 627?650 (1979). · Zbl 0425.16021
[963] R. P. Ranga, ?On direct product of Boolean and lattice ordered rings,? Math. Sem. Notes Kobe Univ.,7, No. 2, 185?191 (1979). · Zbl 0424.06017
[964] R. Raphael, ?A note on ideal structure and unit generation in some fully idempotent and regular rings,? Kyungpeek Math. J.,17, No. 2, 121?122 (1977). · Zbl 0385.16006
[965] R. Raphael, ?Fully idempotent factorization rings,? Commun. Algebra,7, No. 6, 547?563 (1979). · Zbl 0404.16005
[966] R. Raphael, ?A class of rings with arithmetic,? Commun. Algebra,9, No. 6, 561?567 (1981). · Zbl 0466.16014
[967] T. G. Rashkova, ?On the Krull dimension of noetherian rings,? Godishn. Vissh. Uchebn. Zaved., Prilozh. Mat.,14, No. 1, 21?26 (1978(1979)).
[968] A. Regev, ?The T-ideal generated by the standard identity S3(x1, x2, x3), ? Israel J. Math.,26, No. 2, 105?125 (1977). · Zbl 0341.16011
[969] A. Regev, ?The representations of Sn and explicit identities for PI algebras,? J. Algebra,51, No. 1, 25?40 (1978). · Zbl 0374.16009
[970] A. Regev, ?T-Ideals of degree 3 are finitely generated,? Bull. London Math. Soc.,10, No. 3, 261?266 (1978). · Zbl 0411.16013
[971] A. Regev, ?A primeness property for central polynomials,? Pac. J. Math.,83, No. 1, 269?271 (1979). · Zbl 0425.16017
[972] A. Regev, ?Algebras satisfying a Capelli identity,? Israel J. Math.,33, No. 2, 149?154 (1979). · Zbl 0422.16008
[973] A. Regev, ?The identities of matrices, described by characters of the symmetric groups,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 233?241.
[974] A. Regev, ?The polynomial identities of matrices in characteristic zero,? Commun. Algebra,8, No.15, 1417?1467 (1980). · Zbl 0437.16012
[975] A. Regev, ?The Kronecker product of Sn-characters and an A?B theorem for Capelli identities,? J. Algebra,66, No. 2, 505?510 (1980). · Zbl 0445.16012
[976] A. Regev, ?Asymptotic values for degrees associated with strips of Young diagrams,? Adv. Math.,41, No. 2, 115?136 (1981). · Zbl 0509.20009
[977] A. Regev, ?Young tableaux and PI algebras,? Astérisque, Nos. 87?88, 335?352 (1981).
[978] A. Regev, ?Combinatorial sums, identities and trace identities of the 2{\(\times\)}2 matrices,? Adv. Math.,46, No. 2, 230?240 (1982). · Zbl 0499.16013
[979] A. Regev and S. A. Amitsur, ?PI-Algebras and their cocharacters,? J. Algebra,78, No. 1, 248?254 (1982). · Zbl 0495.16014
[980] H. P. Rehm, ?Multiplicative ideal theory of noncommutative Krull pairs. I, II,? J. Algebra,48, No. 1, 150?165, 166?181 (1977). · Zbl 0372.16003
[981] J. Reineke, ?Commutative rings in which every proper ideal is maximal,? Fund. Math.,97, No. 3, 229?231 (1977). · Zbl 0364.13005
[982] G. Renault, Algèbre Non Commutative, Grauthier-Villars, Paris (1975). · Zbl 0307.16001
[983] G. Renault, ?Quelques remarques sur les algèbres algébriques,? Bull. Sci. Math.,101, No. 1, 81?86 (1977). · Zbl 0352.16013
[984] G. Renault, ?Anneaux de polynômes de Ore sur des anneaux artiniens,? Commun. Algebra,7, No. 7, 753?761 (1979). · Zbl 0397.16003
[985] G. Renault, ?Actions de groupes et anneaux régulars injectifs,? in: Lecture Notes in Mathematics, Vol. 734 (1979), pp. 236?247.
[986] R. Resco, ?Transcendental division algebras and simple Noetherian rings,? Israel J. Math.,32, Nos. 2?3, 236?256 (1979). · Zbl 0404.16012
[987] R. Resco, ?A reduction theorem for primitivity of tensor products,? Math. Z.,170, No. 1, 65?76 (1980). · Zbl 0403.16007
[988] R. Resco, ?Krull dimension of Noetherian algebras and extensions of the base field,? Commun. Algebra,8, No. 2, 161?183 (1980). · Zbl 0425.16013
[989] R. Resco, ?Radicals of finite normalizing extensions,? Commun. Algebra,9, No. 7, 713?725 (1981). · Zbl 0454.16011
[990] R. Resco, L. W. Small, and A. R. Wadsworth, ?Tensor products of division rings and finite generation of subfields,? Proc. Am. Math. Soc.,77, No. 1, 7?10 (1979). · Zbl 0377.16010
[991] C. Reutenauer, ?Sur les séries rationnelles en variables non commutatives,? Lect. Notes Comput. Sci.,62, 372?381 (1978). · Zbl 0387.68066
[992] C. Reutenauer, ?Séries formelles et algèbres syntactiques,? J. Algebra,66, No. 2, 448?483 (1980). · Zbl 0444.68075
[993] C. Reutenauer, Séries Rationnelles et Algèbres Syntactiques, Doctoral Thesis, Univ. Pierre et Marie Curie, Paris (1980). · Zbl 0444.68075
[994] P. Revoy, ?Anneau des invariants de groupe alterne,? Bull. Sci. Math.,106, No. 4, 427?431 (1982). · Zbl 0507.13009
[995] A. Richoux, ?A theorem for prime rings,? Proc. Am. Math. Soc.,77, No. 1, 27?31 (1979). · Zbl 0388.16004
[996] M. Rimmer, ?Isomorphisms between skew polynomial rings,? J. Austral. Math. Soc.,A25, No. 3, 314?321 (1978). · Zbl 0418.16003
[997] M. Rimmer, ?Skew polynomial rings and skew power series rings,? Bull. Austral. Math. Soc.,21, No. 1, 149?150 (1980). · Zbl 0406.16002
[998] M. Rimmer and K. R. Pearson, ?Nilpotents and units in skew polynomial rings over commutative rings,? J. Austral. Math. Soc.,A28, No. 4, 423?426 (1979). · Zbl 0432.16002
[999] L. Risman, ?Noncyclic division algebras,? J. Pure Appl. Algebra,11, Nos. 1?3, 199?215 (1977). · Zbl 0369.16017
[1000] L. Risman, ?Twisted rational functions and series,? J. Pure Appl. Algebra,12, No. 2, 181?199 (1978). · Zbl 0374.16013
[1001] L. Risman, ?Group rings and series,? in: Ring Theory, Proceedings of the Antwerp Conference, 1977, New York-Basel (1978), pp. 113?128. · Zbl 0366.16006
[1002] Yu. M. Ryabukhin (Rjabuhin) and R. Wiegandt, ?On special radicals, supernilpotent radicals and weakly homomorphically closed classes,? J. Austral. Math. Soc.,A31, No. 2, 152?162 (1981).
[1003] J. C. Robson, ?Polynomials satisfied by matrices,? J. Algebra,55, No. 2, 509?520 (1978). · Zbl 0411.16016
[1004] J. C. Robson, ?A unified approach to unity,? Commun. Algebra,7, No. 12, 1245?1255 (1979). · Zbl 0428.16015
[1005] J. C. Robson, ?Generators of the polynomials satisfied by matrices,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 243?255.
[1006] J. C. Robson, ?Prime ideals in intermediate extensions,? Proc. London Math. Soc.,44, No. 2, 372?384 (1982). · Zbl 0482.16022
[1007] J. C. Robson and L. W. Small, ?Liberal extensions,? Proc. London Math. Soc.,42, No. 1, 87?103 (1981). · Zbl 0473.16019
[1008] F. Roehl, ?Über distributive Paare von Ringen und arithmetische, nilpotente Ringe,? Manuscr. Math.,31, Nos. 1?3, 1?16 (1980). · Zbl 0433.16009
[1009] F. Röhl, ?Über eine Endlichkeitsbedingung an den Unterringverband eines Ringes,? Abh. Math. Sem. Univ. Hamburg,51, 210?255 (1981). · Zbl 0491.16017
[1010] H. Röhrl, ?Finite-dimensional algebras without nilpotents over an algebraically closed field,? Arch. Math.,32, No. 1, 10?12 (1979). · Zbl 0387.17001
[1011] C. Roos, ?Regularities of rings,? Delft Progr. Rep.,2, No. 1, 34 (1976).
[1012] C. Roos, ?A class of regularities for rings,? J. Austral. Math. Soc.,A27, No. 4, 437?453 (1979). · Zbl 0409.16013
[1013] B. I. Rose, ?Prime quantifier eliminable rings,? J. London Math. Soc.,21, No. 2, 257?262 (1980). · Zbl 0439.03011
[1014] J. E. Roseblade, ?Applications of the Artin-Rees lemma to group rings,? Symp. Math. Ist. Naz. Alta Mat., Vol. 17, London-New York (1975), pp. 471?478.
[1015] B. de la Rossa, ?On a refinement in the classification of the nil rings,? Port. Math.,36, No. 1, 49?60 (1977).
[1016] R. F. Rossa, ?Radicals of rings and subrings,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 69?72 (1981). · Zbl 0436.17002
[1017] R. F. Rossa and R. L. Tangeman, ?General heredity for radical theory,? Proc. Edinburgh Math. Soc.,20, No. 4, 333?337 (1977). · Zbl 0369.17002
[1018] H. J. le Roux and G. A. P. Heyman, ?A question on the characterization of certain upper radical classes,? Boll. Unione Mat. Ital.,A17, No. 1, 67?72 (1980). · Zbl 0501.16010
[1019] H. J. le Roux, G. A. P. Heyman, and T. L. Jenkins, ?Essentially closed classes of rings and upper radicals,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 63?68 (1981). · Zbl 0482.16007
[1020] L. H. Rowen, ?Generalized polynomial identities. III,? J. Algebra,46, No. 2, 305?314 (1977). · Zbl 0374.16008
[1021] L. H. Rowen, ?Classes of rings torsion-free over their centers,? Pac. J. Math.,69, No. 2, 527?534 (1977). · Zbl 0326.16015
[1022] L. H. Rowen, ?Monomial conditions on prime rings,? Israel J. Math.,17, No. 2, 131?149 (1977). · Zbl 0426.16003
[1023] L. H. Rowen, ?Central simple algebras with involution,? Bull. Am. Math. Soc.,83, No. 5, 1031?1032 (1977). · Zbl 0366.16007
[1024] L. H. Rowen, ?Central simple algebras with involution viewed through centralizers,? J. Algebra,63, No. 1, 41?55 (1980). · Zbl 0429.16015
[1025] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York (1980). · Zbl 0461.16001
[1026] L. H. Rowen, ?Division algebra counterexamples of degree 8,? Israel J. Math.,38, Nos. 1?2, 51?57 (1981). · Zbl 0526.16009
[1027] L. H. Rowen, ?Cyclic division algebras,? Israel J. Math.,41, No. 3, 213?234 (1982). · Zbl 0492.16021
[1028] L. H. Rowen, ?A simple proof of Kostant’s theorem and an analogue for the symplectic involution,? Contemp. Math.,13, 207?215 (1982). · Zbl 0503.16018
[1029] L. H. Rowen and D. J. Saltman, ?Dihedral algebras are cyclic,? Proc. Am. Math. Soc.,84, No. 2, 162?164 (1982). · Zbl 0492.16022
[1030] Z. M. Sadiq, ?Characterizations of upper radical classes of simple rings,? Stud. Sci. Math. Hung.,10, Nos. 1?2, 87?91 (1975).
[1031] R. Saito, ?A remark on automorphisms of separable algebras over Artinian rings,? J. College Dairy, No. 1, 1?4 (1977).
[1032] R. Saito, ?Addendum to ?A note on automorphisms of separable closure of commutative rings?,? J. Coll. Dairy,7, No. 2, 251?253 (1978).
[1033] R. Saito, ?A note on normal ideals of Asano orders,? Proc. Jpn. Acad.,A54, No. 1, 21?23 (1978). · Zbl 0393.16028
[1034] A. Salomaa, ?Power from power series,? in: Mathematical Foundations of Computer Science, 1979, Proceedings of the 8th Symposium, Olomouc, 1979, Berlin (1979), pp. 170?181.
[1035] A. Salomaa, ?Formal power series in noncommuting variables,? in: 18th Scandinavian Congress of Mathematicians, Aarhus, August 18?22, 1980, Boston (1981), pp. 104?124.
[1036] D. J. Saltman, ?Azumaya algebras with involution,? J. Algebra,52, No. 2, 526?539 (1978). · Zbl 0382.16003
[1037] D. J. Saltman, ?On p-power central polynomials,? Proc. Am. Math. Soc.,78, No. 1, 11?13 (1980).
[1038] D. J. Saltman, ?Generic algebras,? in: Lecture Notes in Mathematics, Vol. 917 (1982), pp. 96?117. · Zbl 0484.12005
[1039] A. D. Sands, ?A characterization of semisimple classes,? Proc. Edinburgh Math. Soc.,24, No. 1, 5?7 (1981). · Zbl 0452.16013
[1040] A. D. Sands, ?Weakly homomorphically closed semlsimple classes of subidempotent radicals,? Acta Math. Acad. Sci. Hung.,39, Nos. 1?3, 179?18? (1982). · Zbl 0531.16004
[1041] A. D. Sands, ?On M-nilpotent rings,? Proc. R. Soc. Edinburgh,A93, Nos. 1?2, 63?70 (1982). · Zbl 0514.16003
[1042] J. J. Sarraillé, ?Noetherian PI-rings not module finite over any commutative subring,? Proc. Am. Math. Soc.,84, No. 4, 457?463 (1982). · Zbl 0465.16008
[1043] J. J. Sarraillé, ?Module finiteness of low dimensional PI-rings,? Pac. J. Math.,102, No. 1, 189?208 (1982). · Zbl 0465.16007
[1044] M. Satyanarayana, ?On O-simple semigroups admitting ring structure,? Semigroup Forum,19, No. 4, 307?312 (1980). · Zbl 0444.20061
[1045] T. Savage, ?Generalized inverses in regular rings,? Pac. J. Math.,87, No. 2, 455?466 (1980). · Zbl 0446.16011
[1046] M. Schacher, ?The crossed-product problem,? in: Ring Theory II, Proceedings of the 2nd Conference, University of Oklahoma, Norman, Oklahoma, 1975, New York-Basel (1977), pp. 237?245.
[1047] W. Scharlau, ?Zur Existenz von Involution auf einfachen Algebren. II,? Math. Z.,176, No. 3, 399?404 (1981). · Zbl 0456.16014
[1048] W. Scharlau and A. Tschimmel, ?On the level of skew-fields,? Arch. Math.,40, No. 4, 314?315 (1983). · Zbl 0497.12009
[1049] W. Schelter, ?Intersection theorems for some noncommutative noetherian rings,? J. Algebra,38, No. 1, 244?250 (1976). · Zbl 0328.16028
[1050] W. Schelter, ?Integral extensions of rings satisfying a polynomial identity,? J. Algebra,40, No. 1, 245?257 (1976). · Zbl 0341.16009
[1051] W. Schelter, ?On the Krull-Akizukl theorem,? J. London Math. Soc.,13, No. 2, 263?264 (1976). · Zbl 0331.16017
[1052] W. Schelter, ?Azumaya algebras and Artin’s theorem,? J. Algebra,46, No. 1, 303?304 (1977). · Zbl 0353.16008
[1053] W. Schelter, ?Affine PI-rings are catenary,? Bull. Am. Math. Soc.,83, No. 6, 1309?1310 (1977). · Zbl 0372.16011
[1054] W. Schelter, ?Noncommutative affine PI-rings are catenary,? J. Algebra,51, No. 1, 12?18 (1978). · Zbl 0375.16015
[1055] W. Schelter, ?Affine rings satisfying polynomial identities,? Contemp. Math.,13, 217?221 (1982). · Zbl 0504.16010
[1056] W. H. Schikhof, ?A note on finite rings,? Math. Nachr.,98, 121?122 (1980). · Zbl 0469.13013
[1057] B. Schultz, ?Über die Vollstandigkeit induktiver Gruppoide, die zu einer speziellen Klasse endlicher Ringe gehören,? Wiss. Beitr. M. Luther Univ. Halle-Wittenberg,M, No. 21, 95?107 (1981). · Zbl 0469.16020
[1058] A. Shamsuddin, ?A note on a class of simple Noetherian domains,? J. London Math. Soc.,15, No. 2, 213?216 (1977). · Zbl 0355.16019
[1059] A. Shamsuddin, ?On automorphisms of polynomial rings,? Bull. London Math. Soc.,14, No. 5, 407?409 (1982). · Zbl 0507.13004
[1060] J.-S. Shiue and W.-M. Chao, ?On the Boolean rings,? Yokohama Math. J.,24, Nos. 1?2, 93?96 (1976).
[1061] A. Sierpinka, ?K-Completeness and its application to radicals of semigroup rings,? Demonstr. Math.,13, No. 3, 641?645 (1980(1981)).
[1062] H. Simmons, ?Reticulated rings,? J. Algebra,66, No. 1, 169?192 (1980). · Zbl 0462.13002
[1063] G. E. Simons, ?Varieties of rings with definable principal congruences,? Proc Am. Math. Soc.,87, No. 3, 397?402 (1983). · Zbl 0512.16017
[1064] C. Small, ?Some functors which lie between the additive and multiplicative groups of a ring,? Indian J. Math.,16, No. 1, 55?56 (1974). · Zbl 0349.13005
[1065] C. Small and J. C. Robson, ?Idempotent ideals in PI-rings,? J. London Math. Soc.,14, No. 1, 120?122 (1976). · Zbl 0347.16012
[1066] C. Small and J. T. Stafford, ?Localization and completions of Noetherian PI-algebras,? J. Algebra,70, No. 1, 156?161 (1981). · Zbl 0478.16012
[1067] C. Small and J. T. Stafford, ?Regularity of zero divisors,? Proc London Math. Soc.,44, No. 3, 405?419 (1982). · Zbl 0485.16010
[1068] C. Small and A. R. Wadsworth, ?An example in affine PI-rings,? Israel J. Math.,36, Nos. 3?4, 285?286 (1980). · Zbl 0449.16014
[1069] C. Small and A. R. Wadsworth, ?Some examples of rings,? Commun. Algebra,9, No. 10, 1105?1118 (1981). · Zbl 0453.16008
[1070] D. B. Smith and J. Luh, ?On semigroups of endomorphisms of generalized Boolean rings,? J. Austral. Math. Soc.,18, No. 4, 411?418 (1974). · Zbl 0307.20043
[1071] K. C. Smith, ?Algebraically closed noncommutative polynomial rings,? Commun. Algebra,5, No. 4, 331?346 (1977). · Zbl 0355.16021
[1072] P. F. Smith, ?Rings with every proper image a principal ideal ring,? Proc Am. Math. Soc.,81, No. 3, 347?352 (1981). · Zbl 0461.16013
[1073] P. F. Smith, ?The Artin-Rees property,? in: Lecture Notes in Mathematics, Vol. 924 (1982), pp. 197?240. · Zbl 0483.16010
[1074] P. F. Smith, ?Rings with enough invertible ideals,? Can. J. Math.,35, No. 1, 131?144 (1983). · Zbl 0512.16013
[1075] T. H. M. Smits, ?Quadratic skew polynomial rings. II,? Delft Progr. Rep.,3, No. 1, 3?7 (1977). · Zbl 0393.16001
[1076] T. H. M. Smits, ?Quadratic skew polynomial rings,? Delft Progr. Rep.,2, No. 2, 111?118 (1977). · Zbl 0357.16019
[1077] T. H. M. Smits, ?Skew Laurent series over semisimple rings,? Delft Progr. Rep.,2, No. 2, 131?136 (1977). · Zbl 0357.16020
[1078] T. H. M. Smits, ?Representations of quadratic extensions of commutative rings,? Delft Progr. Rep.,3, No. 3, 179?186 (1978). · Zbl 0402.16006
[1079] T. H. M. Smits, ?On the coproduct of quadratic algebras,? Delft Progr. Rep.,4, No. 4, 221?233 (1979).
[1080] J. T. Stafford, ?Bounded number of generators of right ideals in polynomial rings,? Commun. Algebra,8, No. 16, 1513?1518 (1980). · Zbl 0436.16010
[1081] J. T. Stafford, ?On the stable range of Noetherian rings,? Bull. London Math. Soc.,13, No. 1, 39?41 (1981). · Zbl 0423.16008
[1082] J. T. Stafford, ?Rings with a bounded number of generators for right ideals,? Q. J. Math.,34, No. 133, 107?114 (1983). · Zbl 0512.16014
[1083] S. Steinberg, ?Special elements in semiprime rings,? in: Lecture Notes in Mathematics, Vol. 848 (1981), pp. 274?277. · Zbl 0474.16004
[1084] O. Steinfeld, ?Some characterizations of groups and division rings,? Math. Jpn.,21, No. 4, 333?336 (1976). · Zbl 0353.16009
[1085] O. Steinfeld, Quasiideals in Rings and Semigroups, Akad. Kiadó, Budapest (1978).
[1086] P. N. Stewart, ?Radicals and functional representations,? Acta Math. Acad. Sci. Hung.,27, Nos. 3?4, 319?321 (1976). · Zbl 0335.16011
[1087] P. N. Stewart, ?Quasiideals in rings,? Acta Math. Acad. Sci. Hung.,38, Nos. 1?4, 231?235 (1981). · Zbl 0482.16028
[1088] P. N. Stewart, ?Nilpotence and normalizing extensions,? Commun. Algebra,11, No. 1, 109?110 (1983). · Zbl 0501.16027
[1089] P. N. Stewart and R. Wiegandt, ?Quasiideals and biideals in radical theory,? Acta Math. Acad. Sci. Hung.,39, Nos. 1?3, 289?294 (1982). · Zbl 0519.16006
[1090] E. L. Stitzinger, ?On the commutativity of semisimple associative algebras,? Can. Math. Bull.,20, No. 4, 485?487 (1977). · Zbl 0396.16018
[1091] R. W. Stringall, ?The categories of p-rings are equivalent,? Proc. Am. Math. Soc.,29, No. 2, 229?235 (1971). · Zbl 0221.16011
[1092] C. Suffel, E. Beikenstein, and L. Nariri, ?Lattice theory and Jacobson rings,? Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur.,57, No. 6, 596?605 (1974(1975)).
[1093] K. Sugano, ?On a special type of Galois extensions,? Hokkaido Math. J.,9, No. 2, 123?128 (1980). · Zbl 0467.16005
[1094] K. Sugano, ?Note on automorphisms in separable extension of noncommutative ring,? Hokkaido Math. J.,9, No. 2, 268?274 (1980). · Zbl 0452.16002
[1095] K. Sugano, ?Note on cyclic Galois extensions,? Proc. Jpn. Acad.,A57, 60?63 (1981). · Zbl 0469.16021
[1096] K. Sugano, ?On some exact sequences concerned with H-separable extensions,? Hokkaido Math. J.,11, No. 1, 39?43 (1982). · Zbl 0503.16031
[1097] K. Sugano, ?On separable extensions over local rings,? Hokkaido Math. J.,11, No. 1, 111?115 (1982). · Zbl 0494.16003
[1098] K. Sugano, ?On H-separable extensions of two-sided simple rings,? Hokkaido Math. J.,11, No. 3, 246?252 (1982). · Zbl 0496.16007
[1099] R. P. Sullivan, ?Research problems,? Period. Math. Hung.,8, Nos. 3?4, 313?314 (1977). · Zbl 0376.16034
[1100] R. P. Sullivan, ?Semigroup endomorphisms of rings,? J. Austral. Math. Soc.,A26, No. 3, 319?322 (1978). · Zbl 0392.16015
[1101] T. Sumiyama, ?Note on ?-rings,? Math. Jpn.,23, No. 4, 369?370 (1978). · Zbl 0398.20080
[1102] T. Sumiyama, ?Note on maximal Galois subrings of finite local rings,? Math. J. Okayama Univ.,21, No. 1, 31?32 (1979). · Zbl 0421.16002
[1103] T. Sumiyama, ?On unit groups of finite local rings,? Math. J. Okayama Univ.,23, No. 2, 195?198 (1981). · Zbl 0474.16013
[1104] V. Swaminathan, ?On Foster’s Booleanlike rings,? Math. Sem. Notes Kobe Univ.,8, No. 2, 347?368 (1980). · Zbl 0455.06008
[1105] V. Swaminathan, ?Geometry of Boolean rings,? Math. Sem. Notes Kobe Univ.,9, No. 1, 195?214 (1981). · Zbl 0472.06023
[1106] V. Swaminathan, ?A Stone’s representation theorem for Booleanlike rings,? Math. Sem. Notes Kobe Univ.,9, No. 1, 215?218 (1981). · Zbl 0472.06024
[1107] V. Swaminathan, ?Structure of Booleanlike rings,? Math. Sem. Notes Kobe Univ.,9, No. 2, 471?493 (1981). · Zbl 0492.06011
[1108] V. Swaminathan, ?Injective and projective Booleanlike rings,? J. Austral. Math. Soc.,A33, No. 1, 40?49 (1982). · Zbl 0495.06006
[1109] V. Swaminathan, ?Submaximal ideals in a Booleanlike ring,? Math. Sem. Notes Kobe Univ.,10, No. 2, 529?542 (1982). · Zbl 0519.06013
[1110] M. Sweedler, ?Noncommutative purely inseparable extensions,? in: Ring Theory II, Proceedings of the 2nd Conference, University of Oklahoma, Norman, Oklahoma, 1975, New York-Basel (1977), pp. 45?54.
[1111] F. Szász, Radikale der Ringe, Akad. Kiadó, Budapest (1975).
[1112] F. Szász, ?Bemerkungen zu meiner Arbeit: Beiträge zur Radlkaltheorie der Ringe,? Publ. Math.,23, Nos. 1?2, Separatum, 49?51 (1976).
[1113] F. Szász, Radicals of Rings, Akad. Kiadó, Budapest (1981).
[1114] G. Szeto, ?A characterization of Azumaya algebras,? J. Pure Appl. Algebra,9, No. 1, 65?71 (1976). · Zbl 0339.16002
[1115] G. Szeto, ?The Pierce representation of Azumaya algebras,? in: Lecture Notes in Mathematics, Vol. 549 (1976), pp. 86?91. · Zbl 0339.16003
[1116] G. Szeto, ?A generalization of the Artin-Procesi theorem,? J. London Math. Soc.,15, No. 3, 406?408 (1977). · Zbl 0361.16001
[1117] G. Szeto, ?On weakly biregular algebras,? Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys.,26, Nos. 9?10, 775?780 (1978). · Zbl 0393.16013
[1118] G. Szeto and T. O. To, ?The PP ring and the Pierce sheaf representation of noncommutative rings,? Math. Slovaca, No. 4, 337?343 (1980).
[1119] G. Szeto and Y. F. Wong, ?On quaternion algebras over a commutative ring,? Math. Jpn.,25, No. 1, 55?59 (1980). · Zbl 0447.16001
[1120] G. Szeto and Y. F. Wong, ?On separable noncyclic extensions of rings,? J. Austral. Math. Soc.,A34, 394?398 (1983). · Zbl 0522.16027
[1121] F. Taha, ?Algèbres simples centrales sur les corps ultra-produits de corps p-adiques,? in: Lecture Notes in Mathematics, Vol. 924 (1982), pp. 89?128. · Zbl 0489.12009
[1122] S. Tamura, ?Axioms for Boolean rings,? Proc. Jpn. Acad.,46, No. 2, 121?123 (1970). · Zbl 0214.26605
[1123] M. L. Teply, ?On the transfer of properties to subidealizer rings,? Commun. Algebra,5, No. 7, 743?758 (1977). · Zbl 0355.16014
[1124] N. K. Thakare and S. K. Nimbhorkar, ?Space of minimal prime ideals of a ring without nilpotent elements,? J. Pure Appl. Algebra,27, No. 1, 75?85 (1983). · Zbl 0535.16023
[1125] G. Thierrin, ?Rings with right disjunctive elements,? Simon Stevin (Belg.),55, Nos. 1?2, 37?40 (1981).
[1126] J. C. Thomas, ?On filters, generated by sequences of ideals,? Commun. Algebra,6, No. 6, 551?581 (1978). · Zbl 0375.16027
[1127] J.-P. Tignol, ?Les corps universels d’Amitsur,? Bull. Soc. Math. Belg.,28, No. 2, 121?130 (1976). · Zbl 0428.12016
[1128] J.-P. Tignol, ?Sur les decompositions des algèbres à division en produit tensoriel d’algèbres cycliques,? in: Lecture Notes in Mathematics, Vol. 917 (1982), pp. 126?145. · Zbl 0485.16012
[1129] H. Tominaga, ?A generalization of a theorem of A. Kertesz,? Acta Math. Acad. Sci. Hung.,33, Nos. 3?4, 323 (1979). · Zbl 0377.16014
[1130] H. Tominaga, ?A note on quadratic extensions of simple algebras,? Math. Jpn.,25, No. 6, 669?670 (1980). · Zbl 0453.16022
[1131] H. Tominaga, ?Note on the equational definability of addition in rings,? No. 395, 47?50 (1980). · Zbl 0471.16013
[1132] Q. T. Trán and A. Lee, ?Reguláris gyuruk egy osxtályról,? Mat. Lapok,25, Nos. 1?2, 119?127 (1974).
[1133] T. H. Trán, ?A note on the construction of semisimple closure classes,? Stud. Sci. Math. Hung.,15, Nos. 1?3, 317?319 (1980).
[1134] T. H. Trän, E. Makai Jr., and F. A. Szász, ?A topology on the class of unequivocal rings,? Math. Nachr.,108, 307?311 (1982). · Zbl 0519.16007
[1135] T. H. Trán and F. Szász, ?On the radical classes and transfree images of rings,? Acta Math. Acad. Sci. Hung.,35, Nos. 3?4, 399?402 (1980). · Zbl 0463.16010
[1136] T. H. Trán and F. Szász, ?On the radical classes determined by regularities,? Acta Sci. Math.,43, Nos. 1?2, 131?139 (1981).
[1137] T. H. Trán and F. Szász, ?Some notes on the upper and lower radicals,? Period. Math. Hung.,13, No. 2, 163?168 (1982). · Zbl 0501.16007
[1138] J. Treur, ?The Cartan-Brauer-Hua theorem,? Proc. Kon. Ned. Akad. Wetensch.,80, No. 5, 453?454 (1977). · Zbl 0367.16007
[1139] P. G. Trotter, ?Ideals in Z[x, y],? Acta Math. Acad. Sci. Hung.,32, Nos. 1?2, 63?73 (1978). · Zbl 0384.13009
[1140] G. Tzintzis, ?An upper radical property and an answer to a. problem of L. C. A. van Leeuwen and G. A. P. Heyman,? Acta Math. Acad. Sci. Hung.,39, No. 4, 381?385 (1978). · Zbl 0453.16004
[1141] F.-C. Tzung, ?On semigroups of endomorphisms of biregular algebras,? J. Austral. Math. Soc.,27, No. 2, 239?247 (1979).
[1142] T. Ukegawa, ?Some properties of noncommutative multiplication rings,? Proc. Jpn. Acad.,A54, No. 9, 279?284 (1978). · Zbl 0434.16004
[1143] T. Ukegawa, ?On the unique maximal idempotent ideals of nonidempotent multiplication rings,? Proc. Jpn. Acad.,A55, No. 4, 132?135 (1979). · Zbl 0458.16002
[1144] T. Ukegawa, ?Some remarks on M-rings,? Math. Jpn.,28, No. 2, 195?203 (1983). · Zbl 0517.16026
[1145] T. Ukegawa and N. Umaya, ?On a theorem of Asano and some related results of Cohen,? Math. Sem. Notes Kobe Univ.,10, No. 2, 609?617 (1982). · Zbl 0519.16020
[1146] K.-H. Ulbrich, ?Galois-Erweiterungen von nicht-kommutativen Ringen,? Commun. Algebra,10, No. 6, 655?672 (1982). · Zbl 0489.16026
[1147] J. Valette, ?Automorphisms algébriques et algèbre du groupe,? Commun. Algebra,11, No. 5, 461?468 (1983). · Zbl 0507.16006
[1148] A. Verschoren, ?Birationality of PI rings and noncommutative varieties,? in: Lecture Notes in Mathematics, Vol. 825 (1980), pp. 172?197.
[1149] A. Verschoren, ?Pour une géométrie algébrique noncommutative,? in: Lecture Notes in Mathematics, Vol. 867 (1981), pp. 319?350.
[1150] A. Verschoren, ?Finite-dimensional ?-regular algebras,? Rev. Roum. Math. Pures Appl.,26, No. 5, 803?807 (1981). · Zbl 0477.46043
[1151] A. Verschoren, ?Les extensions et les schémas non-commutatifs,? Publ. Math.,28, Nos. 3?4, 209?226 (1981).
[1152] A. Verschoren, ?A glueing process for rings with polynomial identity,? Proc. Kon. Ned. Acad. Wetensch.,A84, No. 4, 459?466 (1981). · Zbl 0517.16012
[1153] R. Vidal, ?Contre-example, non commutatif, dans la théorie des anneaux de Cohen,? C. R. Acad. Sci.,284, No. 14, A791-A794 (1977). · Zbl 0346.16005
[1154] M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Lecture Notes in Mathematics, Vol. 800 (1980).
[1155] A. Vogel, ?Mesures de probabilité sur le spectre d’un anneau régulier et applications,? C. R. Acad. Sci.,A289, No. 3, 153?156 (1979).
[1156] M. V. Volkov, ?Varieties of associative rings closed under Ideal sums,? Comment. Math. Univ. Carol.,24, No. 1, 101?103 (1983). · Zbl 0516.16012
[1157] E. R. Voss, ?On the isomorphism problem for incidence rings,? Illinois J. Math.,24, No. 4, 624?638 (1980). · Zbl 0456.06001
[1158] C. Vraciu, ?Sur l’existence d’un anneau absolument plat commutatif dont le spectre est donné et dont les corps résiduels sont finis,? Bull. Math. Soc. Sci. Mat. RSR,19, Nos. 3?4, 416?419 (1975(1977)). · Zbl 0352.13002
[1159] A. Wagner, ?Invariants of groups generated by reflections or transvections,? Arch. Math.,36, No. 1, 10?12 (1981). · Zbl 0452.15001
[1160] H. Wähling, ?Konjugierte Teilkörper eines KörDers,? Arch. Math.,37, No. 1, 52?58 (1981). · Zbl 0493.16014
[1161] K. Wang, ?Fixed subalgebra of a Frobenius algebra,? Proc. Am. Math. Soc.,87, No. 4, 576?578 (1983). · Zbl 0521.16011
[1162] S. S.-S. Wang, ?Splitting ring of a monic separable polynomial,? Pac. J. Math.,75, No. 1, 293?296 (1978). · Zbl 0345.13003
[1163] J. F. Watters, ?Noncommutative minimally non-Noetherian rings,? Math. Scand.,40, No. 2, 176?182 (1977). · Zbl 0374.16015
[1164] J. F. Watters, ?Semiprime rings with divisible elements,? Arch. Math.,33, No. 3, 222?225 (1979). · Zbl 0411.16002
[1165] J. F. Watters, ?Essential cover and closure,? Ann. Univ. Sci. Budapest Sec. Math.,25, 279?280 (1982).
[1166] M. C. Webb, ?Nilpotent torsion-free rings and triangles of types,? Acta Sci. Math.,41, Nos. 1?2, 253?257 (1979). · Zbl 0372.16006
[1167] W. Wechler, ?Characterization of rational and algebraic power series,? in: Mathematical Foundations of Computer Science, 1979, Proceedings of the 8th Symposium, Olomouc, 1979, Berlin (1979), pp. 499?507. · Zbl 0419.68104
[1168] E. Wexler-Kreindler, ?Sur une classification des extensions d’Ore,? C. R. Acad. Sci.,282, No. 23, A1331-A1333 (1976). · Zbl 0328.16002
[1169] E. Wexler-Kreindler, ?Sur l’anneau des séries formelles tordues,? C. R. Acad. Sci.,AB286, No. 8, 367?370 (1978). · Zbl 0378.16015
[1170] E. Wexler-Kreindler, ?Séries formelles tordues et conditions de chaines,? in: Lecture Notes in Mathematics, Vol. 740 (1979), pp. 99?119. · Zbl 0438.16001
[1171] A. Widiger, ?A general decomposition theorem for Artinian rings,? Stud. Sci. Math. Hung.,12, Nos. 1?2, 29?36 (1977). · Zbl 0442.16014
[1172] A. Widiger, ?Die Ringe, deren sämtliche Unterringe Hauptrechtsidealringe sind,? Publ. Math.,25, Nos. 3?4, 195?201 (1978). · Zbl 0403.16002
[1173] A. Widiger, ?Lattices of radicals for hereditarily Artinian rings,? Math. Nachr.,84, 301?309 (1978). · Zbl 0403.16008
[1174] A. Widiger, ?Which left Artinian rings are right Artinian?,? Math. Nachr.,91, 181?182 (1979). · Zbl 0423.16009
[1175] A. Widiger, ?Nichtprime Cohen rings,? Period. Math. Hung.,12, No. 2, 141?159 (1981). · Zbl 0488.16016
[1176] A. Widiger and R. Wiegandt, ?Theory of radicals for hereditarily Artinian rings,? Acta Sci. Math.,39, Nos. 3?4, 303?312 (1977). · Zbl 0347.16005
[1177] R. Wiegandt, ?Radicals of rings defined by means of elements,? Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl., Abt. 2,184, Nos. 1?4, 117?125 (1975). · Zbl 0333.16008
[1178] R. Wiegandt, ?Prime ideal structure in Noetherian rings,? in: Ring Theory II, Proceedings of the 2nd Conference, University of Oklahoma, Norman, Oklahoma, 1975, New York-Basel (1977), pp. 267?279.
[1179] R. Wiegandt, ?Characterizations of the Baer radical class by almost nilpotent rings,? Publ. Math.,23, Nos. 1?2, Separatum, 15?17 (1976); correction,25, Nos. 3?4, 327?328 (1978).
[1180] R. Wiegandt, ?Semisimple classes and H-relations,? Stud. Sci. Math. Hung.,13, Nos. 1?2, 181?185 (1978(1981)). · Zbl 0423.16004
[1181] S. Wiegandt and R. Wiegandt, ?The maximal ideal space of a Noetherian ring,? J. Pure Appl. Algebra,8, No. 2, 129?141 (1976). · Zbl 0323.13008
[1182] J. B. Wilker, ?Rings of sets are really rings,? Am. Math. Month.,89, No. 3, 211 (1982). · Zbl 0488.28003
[1183] E. T. Wong, ?Almost commutative rings and their integral extensions,? Math. J. Okayama Univ.,18, No. 2, 105?111 (1976). · Zbl 0348.16007
[1184] W. J. Wong, ?Maps on simple algebras preserving zero products. I: The associative case,? Pac. J. Math.,89, No. 1, 229?247 (1980). · Zbl 0405.16006
[1185] P. Wynn, ?The algebra of certain formal power series,? Riv. Mat. Univ. Parma,2, No. 4, 155?176 (1976).
[1186] I. Yakabe, ?Generalized Booleanlike rings,? Math. Rep. Coll. Gen. Educ. Kyuchu Univ.,13, No. 2, 79?85 (1982).
[1187] S. Yammlne, ?Les théorèmes de Cohen-Seidenberg en algèbre noncommutative,? in: Lecture Notes in Mathematics, Vol. 740 (1979), pp. 120?169.
[1188] S. Yammine, ?Incomparabilité et invariants,? Bull. Sec. Sci. CTHS,3, 139?154 (1981).
[1189] A. Yaqub, ?Equational definability of addition in rings generated by idempotents,? Math. J. Okayama Univ.,23, No. 2, 203?204 (1981). · Zbl 0475.13001
[1190] R. Yue-Chi-Ming, ?On von Neumann regular rings,? I. Proc. Edinburgh Math. Soc.,19, No. 1, 89?91 (1974); II. Math. Scand.,39, No. 2, 167?170 (1976); III. Monatsh. Math.,86, No. 3, 251?257 (1978); IV. Riv. Mat. Univ. Parma, 6, 47?54 (1980); V. Mat. J. Okayama Univ.,22, No. 2, 151?160 (1980); VI. Rend. Sem. Mat. Univ. Politech. Torino,39, No. 3, 75?83 (1981). · Zbl 0251.16011
[1191] R. Yue-Chi-Ming, ?On annihilator ideals,? Math. J. Okayama Univ.,19, No. 1, 51?53 (1976). · Zbl 0348.16008
[1192] R. Yue-Chi-Ming, ?On regular rings and continuous rings,? Math. Jpn.,24, No. 6, 563?571 (1979); II. Kyungpook Math. J.,21, No. 2, 171?178 (1981).
[1193] A. Zaks, ?Dedekind k-subalgebras of k(x),? Commun. Algebra,5, No. 4, 347?364 (1977). · Zbl 0354.13013
[1194] A. Zaks, ?Atomic rings without acc on principal ideals,? J. Algebra,74, No. 1, 223?231 (1982). · Zbl 0484.13012
[1195] A. E. Zalesskii (Zalesski), ?On the T-ideals of free associative and Lie algebras,? in: Ring Theory, Proceedings of the Antwerp Conference, 1978, New York-Basel (1979), pp. 351?360.
[1196] A. E. Zalesskii (Zalesski) and M. B. Smirnov, ?Lie algebra associated with linear group,? Commun. Algebra,9, No. 20, 2075?2100 (1981). · Zbl 0476.16024
[1197] H. Zassenhaus, ?When is the unit group of a Dedekind order solvable?,? Commun. Algebra,6, No. 16, 1621?1627 (1978). · Zbl 0392.16004
[1198] H. Zeitler, ?Die Amalgamlerungseigenschaft und reine Ringe,? Arch. Math. Log. und Grundlagenforsch.,21, Nos. 1?2, 83?100 (1981). · Zbl 0466.03010
[1199] J. Zeleznikow, ?On regular semigroups, semirings and rings,? Bull. Austral. Math. Soc.,22, No. 2, 313?314 (1980). · Zbl 0434.16031
[1200] J. M. Zelmanowitz, ?The finite intersection property on annihilator right ideals,? Proc. Am. Math. Soc.,57, No. 2, 213?216 (1976). · Zbl 0333.16014
[1201] J. M. Zelmanowitz, ?On the Jacobson density theorem,? Contemp. Math.,13, 155?162 (1982). · Zbl 0503.16028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.