×

Bernstein theorems for harmonic morphisms from \({\mathbb R}\) 3 and S 3. (English) Zbl 0621.58011

A smooth mapping between Riemannian manifolds is called a harmonic morphism if, for every function f harmonic on an open set \(V\subset N\), the composition \(f\circ \phi\) is harmonic on \(\phi ^{-1}(V)\subset M\). Harmonic morphisms have been characterized as ”horizontally weakly conformal” harmonic maps by B. Fuglede [Ann. Inst. Fourier 28, No.2, 107-144 (1978; Zbl 0339.53026)] and T. Ishihara [J. Math. Kyoto Univ. 19, 215-229 (1979; Zbl 0421.31006)], and as Brownian path preserving mappings by A. Bernard, E. A. Campbell and A. M. Davie [Ann. Inst. Fourier 29, 207-228 (1979; Zbl 0386.30029)].
Simple examples are (i) any orthogonal projection \({\mathbb{R}}^ 3\to {\mathbb{R}}^ 2\), (ii) the Hopf map \(S^ 3\to S^ 2\). In this paper we show that these are essentially the only harmonic morphisms from their domains to a Riemann surface, namely we show that (i) any nonconstant harmonic morphism from \({\mathbb{R}}^ 3\) to a Riemann surface N is an orthogonal projection \({\mathbb{R}}^ 3\to {\mathbb{R}}^ 2\) followed by a weakly conformal map of \({\mathbb{R}}^ 2\) to N, (ii) any nonconstant harmonic morphism from \(S^ 3\) to a Riemann surface N is, after an orthogonal change of coordinates, the Hopf map \(S^ 3\to S^ 2\) followed by a weakly conformal map of \(S^ 2\) to N, hence \(N=S^ 2\). Since harmonic morphisms from \({\mathbb{R}}^ 3\) and \(S^ 3\) to manifolds of dimension \(\neq 2\) are easy to determine, these results mean that all harmonic morphisms from \({\mathbb{R}}^ 3\) and \(S^ 3\) are now known.
The main tool is a Weierstrass type representation theorem for harmonic morphisms from \({\mathbb{R}}^ 3\) and \(S^ 3\) to surfaces arising from the conformal foliation by fibres which is related to the work of C. G. J. Jacobi [J. Reine Angew. Math. 36, 113-134 (1847)], whose problem we thereby solve completely.

MSC:

58E20 Harmonic maps, etc.
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
60J45 Probabilistic potential theory
57R30 Foliations in differential topology; geometric theory

References:

[1] Baird, P.: Harmonic maps with symmetry, harmonic morphisms and deformations of metrics. Research Notes in Mathematics, Vol. 87, Boston London Melbourne: Pitman 1983 · Zbl 0515.58010
[2] Baird, P.: Harmonic morphisms onto Riemann surfaces and generalized analytic functions. Ann. Inst. Fourier, Grenoble37, 135-173 (1987) · Zbl 0608.58015
[3] Baird, P., Eells, J.: A conservation law for harmonic maps. In: Looijenga, E., Siersma, D., Takens, F. (eds.). Geometry Symposium Utrecht 1980, Proceedings. Lecture Notes Mathematics, Vol. 894, pp. 1-25. Berlin Heidelberg New York: Springer 1981
[4] Bernard, A., Campbell, E.A., Davie, A.M.: Brownian motion and generalized analytic and inner functions. Ann. Inst. Fourier, Grenoble29, 207-228 (1979) · Zbl 0386.30029
[5] Chern, S.S.: Minimal surfaces in an Euclidean space ofN dimensions. In: Cairns, S.S. (ed.) Differential and combinatorial topology, pp. 187-198 Princeton: Princeton University Press 1965
[6] Conway, J.B.: Functions of one complex variable. Berlin Heidelberg New York: Springer 1983 · Zbl 0508.20023
[7] Eells, J., Polking, J.C.: Removable singularities of harmonic maps. Indiana Univ. Math. J.33, 859-871 (1984) · Zbl 0559.58011 · doi:10.1512/iumj.1984.33.33046
[8] Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math.86, 109-160 (1964) · Zbl 0122.40102 · doi:10.2307/2373037
[9] Fuglede, B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier Grenoble28, 107-144 (1978) · Zbl 0339.53026
[10] Greene, R.E., Wu, H.: Embeddings of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier, Grenoble12, 415-571 (1962)
[11] Helms, L.L.: Introduction to potential theory. New York London Sydney Toronto: Wiley 1969 · Zbl 0188.17203
[12] Hoffman, D.A., Osserman, R.: The geometry of the generalized Gauss map. Memoirs of the American Math. Soc., Vol. 28, No. 236. Providence: Am. Math. Soc. 1980 · Zbl 0469.53004
[13] Ishihara, T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ.19, 215-229 (1979) · Zbl 0421.31006
[14] Jacobi, C.G.J.: Über eine particuläre Lösung der partiellen Differentialgleichung \(\frac{{\partial ^2 V}}{{\partial x^2 }} + \frac{{\partial ^2 V}}{{\partial y^2 }} + \frac{{\partial ^2 V}}{{\partial z^2 }} = 0\) . Crelle Reine Angew. Math.36, 113-134 (1847) · ERAM 036.1002cj
[15] Kamber, F.W., Tondeur, Ph.: The Bernstein problem for foliations. In: Global differential geometry and global analysis. Proceedings Berlin 1984. Lecture Notes Mathematics, Vol. 1156, pp. 216-218 Berlin Heidelberg New York: Springer 1985
[16] Osserman, R.: A survey of minimal surfaces. New York: Van Nostrand Reinhold 1969. Secd. edit.: New York: Dover 1986 · Zbl 0209.52901
[17] Reinhart, B.L.: Differential geometry of foliations. Ergebnisse Math., Vol. 99. Berlin Heidelberg New York: Springer 1983 · Zbl 0506.53018
[18] Ruh, E.A., Vilms, J.: The tension field of the Gauss map. Trans. Am. Math. Soc.149, 569-573 (1970) · Zbl 0199.56102 · doi:10.1090/S0002-9947-1970-0259768-5
[19] Siegel, C.L.: Topics in complex function theory. New York London Sydney Toronto: Wiley 1969 · Zbl 0184.11201
[20] Steenrod, N.: The topology of fibre bundles. Princeton: Princeton University Press 1951 · Zbl 0054.07103
[21] Vaisman, I.: Conformal foliations. Kodai Math. J.2, 26-37 (1979) · Zbl 0402.57014 · doi:10.2996/kmj/1138035963
[22] Wolf, J.: Spaces of constant curvature. New York St. Louis San Francisco Toronto London Sydney: McGraw-Hill 1967 · Zbl 0162.53304
[23] Wood, J.C.: The Gauss map of a harmonic morphism. In: Cordero, L.A. (ed.) Differential geometry. Research Notes Mathematics, Vol. 131, pp. 149-155. Boston London Melbourne: Pitman 1985 · Zbl 0648.58010
[24] Wood, J.C.: Harmonic morphisms, foliations and Gauss maps. In: Siu, Y.T. (ed.) Complex differential geometry and nonlinear differential equations. Contemporary Mathematics, Vol. 49, pp. 145-183. Providence: Am. Math. Soc. 1986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.