zbMATH — the first resource for mathematics

Homogenization and mechanical dissipation in thermoviscoelasticity. (English) Zbl 0621.73044
In this paper the authors investigate the macroscopic mechanical and thermal behaviour of a medium composed of nonhomogeneous viscoelastic materials of Kelvin-Voigt type. The study demonstrates that the classical theories of viscoelasticity with short range memory can be related to the theories of viscoelasticity with fading memory, through homogenization theory. In this contest the microstructure is supposed of periodic type, with a reference cell which contains all the relevant information on the microstructure. The composite materials is described as the composition of scaled versions of the cell by a small scaling parameter \(\epsilon\). When \(\epsilon\) goes to zero, the displacement field is found to converge (weakly) to the displacement of a body, with the same configuration, made of a homogeneous material which is no longer of Kelvin-Voigt type but rather a material with fading memory. A result of strong convergence for the strain rate field is also obtained.
Reviewer: M.Codegone

74D99 Materials of strain-rate type and history type, other materials with memory (including elastic materials with viscous damping, various viscoelastic materials)
74A15 Thermodynamics in solid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35A15 Variational methods applied to PDEs
Full Text: DOI
[1] A. Bensoussan, J.-L. Lions, & G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, Amsterdam, 1978. · Zbl 0404.35001
[2] H. Brézis, & A. Strauss, ”Semi Linear Second Order Elliptic Equations in L1”, Journal of Math. Soc. of Japan, 25, 1973, p. 565–590. · Zbl 0278.35041
[3] G. Duvaut, ”Analyse Fonctionnelle et Mécanique des Milieux Continus”, in Th. and Appl. Mech., Ed. W. koiter, North Holland, Amsterdam, 1976, p. 119–132.
[4] G. Duvaut & J. L. Lions, Variational Inequalities in Mechanics and Physics, Springer Verlag, Berlin-Heidelberg-New York, 1976. · Zbl 0331.35002
[5] G. Francfort, D. Leguillon, & P. Suquet, ”Homogénisation de Milieux Viscoélastiques Linéaires de Kelvin-Voigt”, C. R. Acad. Sc. Paris I, 296, p. 287–290, 1983. · Zbl 0534.73031
[6] G. Francfort, ”Homogenization and Linear Thermoelasticity” S.I.A.M. J. of Math. Anal., 14, 1983, p. 696–708. · Zbl 0525.73002
[7] P. Germain, Mécanique des Milieux Continus, Masson, Paris, 1973.
[8] P. Germain, Nguyen QuocSon, & P. Suquet, ”Continuum Thermodynamics”, J. Appl. Mech., 105, 1983, p. 1010–1020. · Zbl 0536.73004
[9] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966. · Zbl 0148.12601
[10] B. Nayroles, R. Bouc, M. Caumon, J. C. Chezeaux, & E. Giacommetti, ”Téléthermographie infrarouge et Mécanique des Structures”, I.J.E.S., 19, 1981, p. 929–947. · Zbl 0472.73140
[11] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Springer-Verlag Monograph in Physics, 127, Berlin-Heidelberg-New York, 1980. · Zbl 0432.70002
[12] G. Stampacchia, ”Le problème de Dirichlet pour les Equations Elliptiques du Second Ordre à Coefficients Discontinus”, Ann. Inst. Fourier, Grenoble, 15, 1, 1968, p. 189–258. · Zbl 0151.15401
[13] P. Suquet, ”Une méthode duale en homogénéisation ...” J. Méca. Th. Appl., N spécial, 1982, p. 79–98. · Zbl 0516.73016
[14] L. Tartar, ”Compensated Compactness and applications to P.D.E.” in Non-Linear Mech. and Analysis, Heriot-Watt Symposium, Volume IV, Ed. R. J. Knops, Pitman Resarch Notes in Mathematics, 39, 1979 p. 136–212.
[15] L. Tartar, Cours Peccot Collège de France 1977, partially written in F. Murat, ”H-convergence”, Séminaire d’Analyse fonctionnelle 1977–1978, Alger (Multigraphed).
[16] C. Truesdell, Continuum Mechanics 3, Foundations of Elasticity Theory, Gordon and Breach, New York, 1965.
[17] K. Yosida, Functional Analysis, Springer Verlag, Berlin-Heidelberg-New York, Sixth Edition, 1980. · Zbl 0435.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.