×

Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces. (English) Zbl 0621.76065

We present a large number of new geometric, ergodic and statistical properties of the Kuramoto-Sivashinsky equation modeling interfacial turbulence in various physical contexts. In addition, this equation has the remarkable property of inertial manifolds where some finite- dimensional dynamical system is rigorously equivalent to this infinite- dimensional partial differential equation. In moderate size domains (up to ten periods in length) a low-dimensional vector field skeleton underpins even strongly chaotic regimes and controls the bifurcations of the inertial manifold. The extreme numerical sensitivity of chaos in this dissipative PDE requires very high precision methods. Despite the geometrical complexities of the bifurcation structure, some statistical properties remain remarkably simple. There is overwhelming evidence that for some parameter values a permanent unsteady state exists. An unexpectedly simple diffusive relaxation of the large-scale fluctuations is extracted from extensive numerical simulations.
In these calculations we observe long time tails for the correlation functions of relevant quantities. We propose an explanation in terms of an effective viscosity and compare the transport in the weakly turbulent interface with related theories for random interfaces and developed turbulence.

MSC:

76F99 Turbulence
35R50 PDEs of infinite order
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Calvin, P., Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy. Combust. Sci., 11, 1-59 (1985)
[2] Constantine, P.; Foias, C., Comm. Pure Appl. Math., 38, 1-27 (1985) · Zbl 0582.35092
[3] Constantine, P.; Foias, C.; Tenam, R., Memoirs AMS, 53, #314 (1985) · Zbl 0567.35070
[4] Constantine, P.; Foias, C.; Manley, O. P.; Temam, R., C.R. Acad. Sci. Paris, 297, 599-602 (1983) · Zbl 0531.76066
[5] Constantine, P.; Foias, C.; Manley, O. P.; Temam, R., J. Fluid Mech., 150, 427-440 (1985) · Zbl 0607.76054
[6] Eckman, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys…, 617-656 (1985) · Zbl 0989.37516
[7] Gollub, J. P.; Swinney, H. L., Phys. Rev. Lett., 35, 927 (1975), See also
[8] C. Foias, B. Nicolaenko and R. Temam, Asymptotic study of an equation of G.I. Sivashinsky for two-dimensional turbulence of the Kolmogorov flow, Proc. Paris Acad. Sci., to appear.; C. Foias, B. Nicolaenko and R. Temam, Asymptotic study of an equation of G.I. Sivashinsky for two-dimensional turbulence of the Kolmogorov flow, Proc. Paris Acad. Sci., to appear. · Zbl 0628.35014
[9] Forster, D.; Nelson, D. R.; Stephen, M. J., Large time and long distance properties of a randomly stirred fluid, Phys. Rev. A, 16, 732-749 (1977)
[10] Foias, C.; Temam, R., C.R. Acad. Sci. Paris I, 295, 239-241 (1982) · Zbl 0504.76037
[11] Foias, C.; Temam, R., C.R. Acad. Sci. Paris I, 295, 523-525 (1982) · Zbl 0504.76038
[12] Foias, C.; Temam, R., Mathematics of Computation, 43, 117-133 (1984) · Zbl 0563.35058
[13] Foias, C.; Sell, G. R.; Temam, R., C.R. Acad. Sci. Paris I, 301, 139-141 (1985) · Zbl 0591.35062
[14] C. Foias, G.R. Sell and R. Temam, Inertial manifolds for dissipative PDE’s, submitted.; C. Foias, G.R. Sell and R. Temam, Inertial manifolds for dissipative PDE’s, submitted. · Zbl 0591.35062
[15] Foias, C.; Nicolaenko, B.; Sell, G. R.; Temam, R., C.R. Acad. Sci. Paris I, 301, 285-288 (1985) · Zbl 0591.35063
[16] C. Foias, B. Nicolaenko, G.R. Sell and R. Temam, Inertial manifolds and an estimate of their dimension for the Kuramoto-Sivashinsky equation, submitted.; C. Foias, B. Nicolaenko, G.R. Sell and R. Temam, Inertial manifolds and an estimate of their dimension for the Kuramoto-Sivashinsky equation, submitted. · Zbl 0694.35028
[17] Fujisaka, H.; Yamada, T., Theoretical study of chemical turbulence, Prog. Theor. Phys., 57, 734-745 (1977)
[18] Golubitsky, M.; Schaeffer, D. G., Singularities and Groups in Bifurcation Theory (1985), Springer: Springer New York · Zbl 0607.35004
[19] Grebogi, C.; Ott, E.; Yorke, Y. A., Crisis, sudden changes in chaotic attractors and transient chaos, Physica, 7D, 935-938 (1983)
[20] Grebogi, C.; Ott, E.; Yorke, Y. A., Fractal basin boundaries, long-lived chaotic transients and unstable-unstable pair bifurcation, Phys. Rev. Lett., 50, 935-938 (1983)
[21] Grebogi, C.; McDonald, S. W.; Ott, E.; Yorke, Y. A., Final state sensitivity: an obstruction to predictability, Phys. Lett. A, 99, 415-418 (1983)
[22] Grebogi, C.; McDonald, S. W.; Ott, E.; Yorke, Y. A., Structures and crises of fractal basin boundaries, Phys. Lett. A, 107, 51-54 (1985) · Zbl 1177.37038
[23] Grebogi, C.; Ott, E.; Yorke, Y. A., Super-persistent chaotic transients, Ergod. Th. and Dynamical Sys., 5, 341-372 (1985) · Zbl 0593.58021
[24] Grebogi, C.; McDonald, S. W.; Ott, E.; Yorke, J. A., Fractal basin boundaries, Physica, 17D, 125-153 (1985) · Zbl 0588.58033
[25] Guckenheimer, J.; Holmes, P. H., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (1983), Springer: Springer Berlin · Zbl 0515.34001
[26] Guckenheimer, J., Strange attractors in fluids: another view, Annual Review of Fluid Mechanics (1986) · Zbl 0634.76058
[27] J. Guckenheimer, private communication.; J. Guckenheimer, private communication.
[28] Huse, D. A.; Henley, C. L.; Fischer, D. S., Response, Phys. Rev. Lett., 56, 2924 (1985)
[29] Hyman, J. M.; Nicolaenko, B., The Kuramoto-Sivashinsky equation: a bridge between PDE’s and dynamical systems, Physica, 18D, 113-126 (1986) · Zbl 0602.58033
[30] J.M. Hyman and B. Nicolaenko, “Coherence and Chaos in the Kuramoto-Velarde Equation” in Proc. Conf. Nonlinear PDE’s, MRI, Madison, Wisc. (Academic Press, New York), to be published.; J.M. Hyman and B. Nicolaenko, “Coherence and Chaos in the Kuramoto-Velarde Equation” in Proc. Conf. Nonlinear PDE’s, MRI, Madison, Wisc. (Academic Press, New York), to be published. · Zbl 0655.76043
[31] Hyman, J. M., Numerical methods for nonlinear differential equations, (Bishop, A. R.; Campbell, D. K.; Nicolaenko, B., Nonlinear Problems: Present and Future (1982), North-Holland: North-Holland Amsterdam), 91-107 · Zbl 0486.65057
[32] Hyman, J. M.; Naughton, M., Adaptative static rezoning methods, Lectures in Applied Math., 22, 321-343 (1985)
[33] Kardar, M., Roughening by impurities at finite temperatures, Phys. Rev. Lett., 55, 2923 (1985)
[34] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889-892 (1986) · Zbl 1101.82329
[35] Manneville, P., Statistical properties of chaotic solutions of a one-dimensional model for phase turbulence, Phys. Lett. A, 84, 129-132 (1981)
[36] Manneville, P., Lyapunov exponents for the Kuramoto-Sivashinsky model, (Frisch, U., Proc. Conf. On Macroscopic Modelling of Turbulent Flows. Proc. Conf. On Macroscopic Modelling of Turbulent Flows, Springer Lecture Notes in Physics (1985)), 319-326, nr. 230
[37] Margolus, N.; Toffoli, T.; Vichniac, G., Cellular automata supercomputers for fluid dynamics modeling, Phys. Rev. Lett., 56, 1694-1696 (1986)
[38] D.M. Michelson, Steady states for the Kuramoto-Sivashinsky equation, preprint.; D.M. Michelson, Steady states for the Kuramoto-Sivashinsky equation, preprint. · Zbl 0603.35080
[39] Monin, A. S.; Yaglom, A. M., Statistical Fluid Mechanics (1978), MIT Press: MIT Press Cambridge, MA
[40] Nicolaenko, B.; Scheurer, B., Remarks on the Kuramoto-Sivashinsky equation, Physica, 12D, 331-395 (1984) · Zbl 0576.35058
[41] Nicolaenko, B.; Scheurer, B.; Temam, R., Quelques propertés des attracteurs pour l’équation de Kuramoto-Sivashinsky, C.R. Acad. Sci. Paris, 298, 23-25 (1984) · Zbl 0555.58017
[42] Nicolaenko, B.; Scheurer, B.; Temam, R., Attractors for the Kuramoto-Sivashinski equations, AMS-SIAM Lectures in Applied Mathematics, 23, 149-170 (1986) · Zbl 0596.58024
[43] B. Nicolaenko, B. Scheurer and R. Temam, Attractors for the classes of nonlinear evolution of partial differential equations, in preparation.; B. Nicolaenko, B. Scheurer and R. Temam, Attractors for the classes of nonlinear evolution of partial differential equations, in preparation. · Zbl 0592.35013
[44] Pomeau, Y.; Pumir, A.; Pelce, P., Intrinsic stochasticity with many degrees of freedom, J. Stat. Phys., 37, 39 (1984)
[45] Pomeau, Y.; Résibois, P., Time dependent correlation functions and mode-mode coupling theories, Phys. Reports, 19, 63-139 (1975)
[46] Pumir, A., Statistical properties of an equation describing fluid interfaces, J. Phys., 46, 511-522 (1985)
[47] R. Rammal, G. Toulouse and M.A. Virasoro, Ultrametricity for physicists, preprint.; R. Rammal, G. Toulouse and M.A. Virasoro, Ultrametricity for physicists, preprint.
[48] G.I. Sivashinsky and A. Novick-Cohen, Interfacial instabilities in dilute binary mixtures change of phase, to appear in Physica D.; G.I. Sivashinsky and A. Novick-Cohen, Interfacial instabilities in dilute binary mixtures change of phase, to appear in Physica D. · Zbl 0641.76088
[49] She, Z. S.; Frisch, U.; Thual, O., Homogenization and visco-elasticity of turbulence, (Frisch, U., Proc. Conf. Macroscopic Modelling of turbulent flows. Proc. Conf. Macroscopic Modelling of turbulent flows, Springer Lecture Notes in Physics (1985)), No. 230 · Zbl 0588.76104
[50] B. Shraiman, preprint.; B. Shraiman, preprint.
[51] Shreenivasan, K., Transition to turbulence in fluid flows and low-dimensional chaos, (Davis, S. H.; Lumley, J. L., Frontiers in Fluid Mechanics (1985), Springer: Springer Berlin), 41-67
[52] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis (1983), SIAM: SIAM Philadelphia · Zbl 0522.35002
[53] Temam, R., Infinite-dimensional dynamical systems of fluid mechanics, (Nonlinear Funct. Anal. Appl. (1983), AMS-Summer Res. Institute: AMS-Summer Res. Institute Berkeley) · Zbl 0598.35095
[54] Van Beijeren, H.; Kutner, R.; Spohn, H., Excess noise for driven diffusive systems, Phys. Rev. Lett., 54, 2026 (1985)
[55] Yamada, T.; Kuramoto, Y., Prog. Theor. Phys., 56, 681 (1976)
[56] Yakhot, V., Large scale properties of unstable systems governed by the Kuramoto-Sivashinsky equation, Phys. Rev. A, 24, 642-644 (1977)
[57] S. Zaleski, in preparation.; S. Zaleski, in preparation.
[58] Z. Zaleski and P. Lallemand, Scaling laws and intermittency in phase turbulence, J. Physique Lett. (Paris) to appear.; Z. Zaleski and P. Lallemand, Scaling laws and intermittency in phase turbulence, J. Physique Lett. (Paris) to appear.
[59] M.J. Bennet, private communication.; M.J. Bennet, private communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.