Some retarded nonlinear integral inequalities and their applications in retarded differential equations. (English) Zbl 1279.26036

Summary: We discuss some generalized retarded nonlinear integral inequalities, which does not only include nonlinear compound function of an unknown function but also include retarded items, and give upper bound estimation of the unknown function by integral inequality technique. This estimation can be used as tool in the study of differential equations with the initial conditions.


26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals
26D20 Other analytical inequalities
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
34A40 Differential inequalities involving functions of a single real variable
Full Text: DOI


[1] doi:10.2307/1967124 · JFM 47.0399.02 · doi:10.2307/1967124
[2] doi:10.1215/S0012-7094-43-01059-2 · Zbl 0061.18502 · doi:10.1215/S0012-7094-43-01059-2
[3] doi:10.1006/jmaa.2000.7085 · Zbl 0974.26007 · doi:10.1006/jmaa.2000.7085
[4] doi:10.1016/j.amc.2011.02.093 · Zbl 1220.26012 · doi:10.1016/j.amc.2011.02.093
[5] doi:10.1016/j.amc.2004.04.067 · Zbl 1078.26010 · doi:10.1016/j.amc.2004.04.067
[6] doi:10.1007/BF02022967 · Zbl 0070.08201 · doi:10.1007/BF02022967
[7] doi:10.1007/s10114-004-0463-7 · Zbl 1084.26013 · doi:10.1007/s10114-004-0463-7
[8] doi:10.1016/j.na.2005.08.009 · Zbl 1094.26011 · doi:10.1016/j.na.2005.08.009
[9] doi:10.1016/j.amc.2007.02.099 · Zbl 1193.26014 · doi:10.1016/j.amc.2007.02.099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.