zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces. (English) Zbl 1272.90111
Summary: In this work, we consider two classes of non-self-mappings, which are called proximal weakly contractive and proximal nonexpansive mappings, and study the existence of solutions of a minimization problem. Existence results of best proximity points for these two classes of non-self-mappings in metric and Banach spaces are also obtained.

90C48Programming in abstract spaces
Full Text: DOI
[1] Fan, K.: Extensions of two fixed point theorems of F.E. Browder. Math. Z. 122, 234--240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[2] Abkar, A., Gabeleh, M.: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261--7268 (2011) · Zbl 1263.47065 · doi:10.1016/j.na.2011.07.043
[3] Al-Thagafi, M.A., Shahzad, N.: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665--3671 (2009) · Zbl 1197.47067 · doi:10.1016/j.na.2008.07.022
[4] Eldred, A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001--1006 (2006) · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[5] Derafshpour, M., Rezapour, S., Shahzad, N.: Best proximity points of cyclic {$\phi$}-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193--202 (2011) · Zbl 1227.54046
[6] Di Bari, C., Suzuki, T., Vetro, C.: Best proximity points for cyclic Meir--Keeler contractions. Nonlinear Anal. 69, 3790--3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[7] Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium problems: nonsmooth optimization and variational inequality models, Nonconvex Optim. Appl., 58. doi: 10.1007/b101835 (2004)
[8] Mongkolkeha, C., Kumam, P.: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl. doi: 10.1007/s10957-012-9991-y (2012, in press) · Zbl 1257.54041
[9] Mongkolkeha, C., Kumam, P.: Some common best proximity points for proximity commuting mappings, Optim. Lett. doi: 10.1007/s11590-012-0525-1 (2012, in press) · Zbl 1287.54041
[10] Sintunavarat, S., Kumam, P.: Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl. doi: 10.1186/1687-1812-2012-93 (2012)
[11] Suzuki, T., Kikkawa, M., Vetro, C.: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918--2926 (2009) · Zbl 1178.54029 · doi:10.1016/j.na.2009.01.173
[12] Sankar Raj, V.: A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. 74, 4804--4808 (2011) · Zbl 1228.54046 · doi:10.1016/j.na.2011.04.052
[13] Abkar, A., Gabeleh, M.: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153, 298--305 (2012) · Zbl 1262.90134 · doi:10.1007/s10957-011-9966-4
[14] EspĂ­nola, R.: A new approach to relatively nonexpansive mappings. Proc. Am. Math. Soc. 136, 1987--1996 (2008) · Zbl 1141.47035 · doi:10.1090/S0002-9939-08-09323-4
[15] Alber, Ya.I., Guerre-Delabriere, S.: Principles of weakly contractive maps in Hilbert spaces, new results in operator theory. In: Gohberg, I., Lyubich, Yu (eds.) Advanced and Appl., vol. 98, pp. 7--22. Birkhauser, Basel (1997) · Zbl 0897.47044
[16] Sadiq Basha, S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. 151, 210--216 (2011) · Zbl 1226.90135 · doi:10.1007/s10957-011-9869-4
[17] Sadiq Basha, S.: Best proximity point theorems. J. Approx. Theory 163, 1772--1781 (2011) · Zbl 1229.54049 · doi:10.1016/j.jat.2011.06.012
[18] Abkar, A., Gabeleh, M.: Best Proximity Points of Non-self mappings, Topology doi: 10.1007/s11750-012-0255-7 (2012, in press) · Zbl 1262.90134