zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Normal extensions escape from the class of weighted shifts on directed trees. (English) Zbl 1296.47029
In [Mem. Am. Math. Soc. 1017 (2012; Zbl 1248.47033)], the authors introduced an interesting new class of (not necessarily bounded) operators in Hilbert spaces, called weighted shifts on directed trees. These operators generalize the well known notion of weighted shift operators. In the present paper, the authors continue their study. They show that formally normal weighted shifts on directed trees are always bounded and normal. The question whether a normal extension of a subnormal weighted shift on a directed tree can be modeled as a weighted shift on some (possibly different) directed tree is answered as well. More precisely, they prove that a nonzero weighted shift $S_{\lambda}$ on a directed tree ${\mathcal T}$ with nonzero weights has a normal extension which is a weighted shift on a directed tree if and only if either ${\mathcal T}$ is isomorphic to ${\mathbb Z}$ and $S_{\lambda}$ is unitarily equivalent to a positive scalar multiple of the bilateral shift on $\ell^{2}({\mathbb Z})$, or ${\mathcal T}$ is isomorphic to ${\mathbb Z}_{+}$ and $S_{\lambda}$ is unitarily equivalent to a positive scalar multiple of a unilateral weighted shift on $\ell^{2}({\mathbb Z}_{+})$ with weights $\{ \vartheta,1,1,1,\ldots\}$, where $\vartheta \in (0,1]$.

47B37Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
47B20Subnormal operators, hyponormal operators, etc.
Full Text: DOI
[1] Birman M.Sh., Solomjak M.Z.: Spectral Theory of Selfadjoint Operators in Hilbert Space. D. Reidel Publishing Co., Dordrecht (1987)
[2] Budzyński, P., Jabłoński, Z., Jung, I.B., Stochel, J.: Unbounded subnormal weighted shifts on directed trees. Preprint (2011)
[3] Cichoń D., Stochel J.: Subnormality analyticity and perturbations. Rocky Mt. J. Math. 37, 1831--1869 (2007) · Zbl 1131.47011 · doi:10.1216/rmjm/1199649826
[4] Coddington E.A.: Normal extensions of formally normal operators. Pac. J. Math. 10, 1203--1209 (1960) · Zbl 0095.31302 · doi:10.2140/pjm.1960.10.1203
[5] Coddington E.A.: Formally normal operators having no normal extension. Can. J. Math. 17, 1030--1040 (1965) · Zbl 0134.31803 · doi:10.4153/CJM-1965-098-8
[6] Conway J.B.: The Theory of Subnormal Operators. Mathematical Surveys and Monographs, Providence (1991) · Zbl 0743.47012
[7] Conway J.B., Jin K.H., Kouchekian S.: On unbounded Bergman operators. J. Math. Anal. Appl. 279, 418--429 (2003) · Zbl 1038.47016 · doi:10.1016/S0022-247X(03)00002-7
[8] Gellar R., Wallen L.J.: Subnormal weighted shifts and the Halmos-Bram criterion. Proc. Jpn. Acad. 46, 375--378 (1970) · Zbl 0217.45501 · doi:10.3792/pja/1195520357
[9] Halmos P.R.: Ten problems in Hilbert space. Bull. Am. Math. Soc. 76, 887--933 (1970) · Zbl 0204.15001 · doi:10.1090/S0002-9904-1970-12502-2
[10] Jabłoński, Z.J., Jung, I.B., Stochel, J.: Weighted shifts on directed trees. In: Memoirs of the American Mathematical Society, posted on May 25, 2011, PII S 0065-9266(2011)00644-1 (in press)
[11] Jabłoński, Z.J., Jung, I.B., Stochel, J.: A hyponormal weighted shift on a directed tree whose square has trivial domain. Preprint (2011) · Zbl 1301.47043
[12] Jabłoński, Z.J., Jung, I.B., Stochel, J.: A non-hyponormal operator generating Stieltjes moment sequences. Preprint (2011) · Zbl 1258.47026
[13] Kouchekian S.: The density problem for unbounded Bergman operators. Integral Equ. Oper. Theory 45, 319--342 (2003) · Zbl 1037.32006 · doi:10.1007/s000200300008
[14] Kouchekian S., Thomson J.E.: The density problem for self-commutators of unbounded Bergman operators. Integral Equ. Oper. Theory 52, 135--147 (2005) · Zbl 1085.47037 · doi:10.1007/s00020-002-1273-x
[15] Kouchekian S., Thomson J.E.: On self-commutators of Toeplitz operators with rational symbols. Stud. Math. 179, 41--47 (2007) · Zbl 1124.32006 · doi:10.4064/sm179-1-4
[16] Ore O.: Theory of graphs. American Mathematical Society Colloquium Publications, vol. XXXVIII. American Mathematical Society, Providence (1962) · Zbl 0105.35401
[17] Rudin W.: Real and Complex Analysis. McGraw-Hill, New York (1987) · Zbl 0925.00005
[18] Shields A.L.: Weighted Shift Operators and Analytic Function Theory. Topics in operator theory, pp. 49--128. Math. Surveys, No. 13. American Mathematical Society, Providence (1974)
[19] Stampfli J.: Which weighted shifts are subnormal?. Pac. J. Math. 17, 367--379 (1966) · Zbl 0189.43902 · doi:10.2140/pjm.1966.17.367
[20] Stochel J., Szafraniec F.H.: On normal extensions of unbounded operators, I. J. Oper. Theory 14, 31--55 (1985) · Zbl 0613.47022
[21] Stochel J., Szafraniec F.H.: On normal extensions of unbounded operators, II. Acta Sci. Math. (Szeged) 53, 153--177 (1989) · Zbl 0698.47003
[22] Stochel J., Szafraniec F.H.: On normal extensions of unbounded operators, III, spectral properties. Publ. RIMS Kyoto Univ. 25, 105--139 (1989) · Zbl 0721.47009 · doi:10.2977/prims/1195173765
[23] Stochel J., Szafraniec F.H.: The complex moment problem and subnormality: a polar decomposition approach. J. Funct. Anal. 159, 432--491 (1998) · Zbl 1048.47500 · doi:10.1006/jfan.1998.3284
[24] Stochel J., Szafraniec F.H.: A peculiarity of the creation operator. Glasg. Math. J. 44, 137--147 (2002) · Zbl 1045.47023 · doi:10.1017/S0017089502010091
[25] Weidmann J.: Linear Operators in Hilbert Spaces. Springer, Berlin (1980) · Zbl 0434.47001