×

zbMATH — the first resource for mathematics

A fixed point theorem for set-valued quasi-contractions in \(b\)-metric spaces. (English) Zbl 1457.54032
Summary: In this article, we give a fixed point theorem for set-valued quasi-contraction maps in \(b\)-metric spaces. This theorem extends, unifies and generalizes several well-known comparable results in the existing literature.

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Banach, S, Sur LES opérations dans LES ensembles abstraits et leur application aux équations intégrales, Fund Math, 3, 133-181, (1922) · JFM 48.0201.01
[2] Ćirić, LB, A generalization of Banach’s contraction principle, Proc Am Math Soc, 45, 267-273, (1974) · Zbl 0291.54056
[3] Nadler, SB, Multivalued contraction mappings, Pac J Math, 30, 475-488, (1969) · Zbl 0187.45002
[4] Amini Harandi, A, Fixed point theory for set-valued quasi-contraction maps in metric spaces, Appl Math Lett, 24, 1791-1794, (2011) · Zbl 1230.54034
[5] Czerwik, S, Contraction mappings in \(b\)-metric spaces, Acta Math Inf Univ Ostraviensis, 1, 5-11, (1993) · Zbl 0849.54036
[6] Czerwik, S, Nonlinear set-valued contraction mappings in \(b\)-metric spaces, Atti Sem Mat Fis Univ Modena, 46, 263-276, (1998) · Zbl 0920.47050
[7] Boriceanu, M, Fixed point theory for multivalued generalized contraction on a set with two \(b\)-metrics, Studia Univ Babes-Bolyai Math, LIV, 1-14, (2009) · Zbl 1240.54118
[8] Boriceanu, M, Strict fixed point theorems for multivalued operators in \(b\)-metric spaces, Int J Modern Math, 4, 285-301, (2009) · Zbl 1221.54051
[9] Czerwik, S; Dlutek, K; Singh, SL, Round-off stability of iteration procedures for operators in \(b\)-metric spaces, J Nature Phys Sci, 11, 87-94, (1997) · Zbl 0968.54031
[10] Czerwik, S; Dlutek, K; Singh, SL, Round-off stability of iteration procedures for set-valued operators in \(b\)-metric spaces, J Nature Phys Sci, 11, 87-94, (2007) · Zbl 0968.54031
[11] Singh, SL; Bhatnagar, C; Mishra, SN, Stability of iterative procedures for multivalued maps in metric spaces, Demonstratio Math, 38, 905-916, (2005) · Zbl 1100.47056
[12] Singh, SL; Prasad, B, Some coincidence theorems and stability of iterative procedures, Comput Math Appl, 55, 2512-2520, (2008) · Zbl 1142.65360
[13] Bota, M; Molnar, A; Varga, C, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory, 12, 21-28, (2011) · Zbl 1278.54022
[14] Huang, LG; Zhang, X, Cone metric spaces and fixed point theorems of contractive mappings, J Math Anal Appl, 332, 1468-1476, (2007) · Zbl 1118.54022
[15] Pavlović, M; Radenović, S; Radojević, S, Abstract metric spaces and sehgal-guseman type theorems, Comput Math Appl, 60, 865-872, (2000) · Zbl 1201.65093
[16] Singh, SL; Czerwik, S; Krol, K; Singh, A, Coincidences and fixed points points of hybrid contractions, Tamsui Oxford J Math Sci, 24, 401-416, (2008) · Zbl 1175.54063
[17] Daffer, PZ; Kaneko, H, Fixed points of generalized contractive multi-valued mappings, J Math Anal Appl, 192, 655-666, (1995) · Zbl 0835.54028
[18] Rouhani, BD; Moradi, S, Common fixed point of multivalued generalized (\(ψ\), \(φ\))-weak contractive mappings, Fixed Point Theory Appl, 2010, 13, (2010)
[19] Ćirić, LB, Fixed points for generalized multi-valued contractions, Math Vesnik, 9, 265-272, (1972) · Zbl 0258.54043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.