zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lewy-Stampacchia type estimates for variational inequalities driven by (non)local operators. (English) Zbl 1275.49016
The paper under review establishes Lewy-Stampacchia type estimates for several classes of nonlinear problems, starting with classes driven by nonlocal operators. The approach developed in this paper is of high interest and it covers the settings corresponding to the standard Laplace or $p$-Laplace operators, as well as the Laplacian on the Heisenberg group. The case of integral operators with even kernel is also covered by the Lewy-Stampacchia estimates established in this paper. The proofs combine modern techniques in the theory of nonlocal operators with arguments in the theory of nonlinear partial differential equations.

MSC:
49J40Variational methods including variational inequalities
35J86Linear elliptic unilateral problems; linear elliptic variational inequalities
35J87Nonlinear elliptic unilateral problems; nonlinear elliptic variational inequalities
35R11Fractional partial differential equations
35R35Free boundary problems for PDE
WorldCat.org
Full Text: DOI
References:
[1] Boccardo, L. and Gallouet, T: Probl` emes unilatéraux avec données dans L1 (Unilateral problems with L1 data). C. R. Acad. Sci. Paris, Sér. I 311 (1990), no. 10, 617-619. · Zbl 0715.49013
[2] Brézis, H.: Analyse fonctionelle. Théorie et applications. Masson, Paris, 1983. · Zbl 0511.46001
[3] Caffarelli, L. A., Salsa, S. and Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171 (2008), no. 2, 425-461. · Zbl 1148.35097 · doi:10.1007/s00222-007-0086-6 · arxiv:math/0702392
[4] Challal, S., Lyaghfouri, A. and Rodrigues, J. F.: On the A-obstacle problem and the Hausdorff measure of its free boundary. Ann. Mat. Pura Appl. (4) 191 (2012), no. 1, 113-165. · Zbl 1235.35285 · doi:10.1007/s10231-010-0177-7
[5] DiBenedetto, E.: C1+\alpha -local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7 (1983), no. 8, 827-850. · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5
[6] Di Nezza, E., Palatucci, G. and Valdinoci, E.: Hitchhiker’s guide to the frac- tional Sobolev spaces. Bull. Sci. Math. 136 (2012), no. 5, 521-573. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004 · arxiv:1104.4345
[7] Donati, F.: A penalty method approach to strong solutions of some nonlinear parabolic unilateral problems. Nonlinear Anal. 6 (1982), no. 6, 585-597. · Zbl 0489.49006 · doi:10.1016/0362-546X(82)90050-5
[8] Frehse, J. and Mosco, U.: Irregular obstacles and quasivariational inequalities of stochastic impulse control. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 9 (1982), no. 1, 109-157. · Zbl 0503.49008 · numdam:ASNSP_1982_4_9_1_105_0 · eudml:83873
[9] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second order, 2nd ed. Springer Verlag, Berlin, 1983. · Zbl 0562.35001
[10] Hanouzet, B. and Joly, J. L.: Méthodes d’ordre dans l’interprétation de certaines inéquations variationelles et applications. J. Funct. Anal. 34 (1979), no. 2, 217-249. · Zbl 0425.49009 · doi:10.1016/0022-1236(79)90032-6
[11] Landkof, N. S.: Foundations of modern potential theory. Springer Verlag, New York-Heidelberg, 1972. · Zbl 0253.31001
[12] Lewy, H. and Stampacchia, G.: On the smoothness of superharmonics which solve a minimum problem. J. Analyse Math. 23 (1970), 227-236. · Zbl 0206.40702 · doi:10.1007/BF02795502
[13] Lieb, E. H. and Loss, M.: Analysis. Amer. Math. Soc., Providence, RI, 1997.
[14] Lieberman, G. M.: Boundary regularity for solutions of degenerate elliptic equa- tions. Nonlinear Anal. 12 (1988), no. 11, 1203-1219. · Zbl 0675.35042 · doi:10.1016/0362-546X(88)90053-3
[15] Mastroeni, L. and Matzeu, M.: An integro-differential parabolic variational in- equality connected with the problem of the American option pricing. Z. Anal. An- wendungen 14 (1995), no. 4, 869-880. · Zbl 0878.45005 · doi:10.4171/ZAA/654
[16] Mastroeni, L. and Matzeu, M.: Nonlinear variational inequalities for jump- diffusion processes and irregular obstacles with a financial application. Nonlinear Anal. 34 (1998), no. 6, 889-905. · Zbl 1096.49506 · doi:10.1016/S0362-546X(97)00553-1
[17] Milakis, E. and Silvestre, L.: Regularity for the nonlinear Signorini problem. Adv. Math. 217 (2008), no. 3, 1301-1312. · Zbl 1132.35025 · doi:10.1016/j.aim.2007.08.009
[18] Mokrane, A. and Murat, F.: A proof of the Lewy-Stampacchia’s inequality by a penalization method. Potential Anal. 9 (1998), no. 2, 105-142. · Zbl 0918.35058 · doi:10.1023/A:1008649609888
[19] Mokrane, A. and Murat, F.: The Lewy-Stampacchia inequality for bilateral problems. Ricerche Mat. 53 (2004), no. 1, 139-182. · Zbl 1121.35066