×

Operations on \(t\)-structures and perverse coherent sheaves. (English. Russian original) Zbl 1292.14014

Izv. Math. 77, No. 4, 651-674 (2013); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 77, No. 4, 5-30 (2013).
Let \(\mathcal{D}\) be a triangulated category. In this paper, the author considers the set of \(t\)-structures on \(\mathcal{D}\) and the natural partial order given and binary operations given on it by intersection and union. In order to show the existence of arbitrary unions and intersections, lower (resp. upper) consistent pairs of \(t\)-structures are defined by imposing consistency of the first (resp. the second) one with respect to the truncation functor coming from the second (resp. the first) one. Modular laws for the lattice are described, and an application to perverse sheaves on a smooth projective variety in characteristic zero is detailed in the last section.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
18E30 Derived categories, triangulated categories (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Г. Биркгоф, Теория решеток, Наука, М., 1984 · Zbl 0537.06001
[2] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., 25, Amer. Math. Soc., New York, 1948 · Zbl 0033.10103
[3] R. Bezrukavnikov, Perverse coherent sheaves (after Deligne), arXiv: math/0005152
[4] M. Kashiwara, “\(t\)-structures on the derived categories of holonomic \(\mathscr D\)-modules and coherent \(\mathscr O\)-modules”, Mosc. Math. J., 4:4 (2004), 847 – 868 · Zbl 1073.14023
[5] O. Gabber, “Notes on some \(t\)-structures”, Geometric aspects of Dwork theory, v. I, II, de Gruyter, Berlin, 2004, 711 – 734 · Zbl 1074.14018
[6] A. Bondal, D. Orlov, Semiorthogonal decomposition for algebraic varieties, arXiv: alg-geom/9506012
[7] T. Bridgeland, “Flops and derived categories”, Invent. Math., 147:3 (2002), 613 – 632 · Zbl 1085.14017
[8] T. Bridgeland, “Stability conditions on triangulated categories”, Ann. of Math. (2), 166:2 (2007), 317 – 345 · Zbl 1137.18008
[9] J.-L. Verdier, “Categories derivees”, Seḿinaire de Geómeťrie Alge\'brique du Bois-Marie SGA \(4\frac12\), Lecture Notes in Math., 569, Springer-Verlag, Berlin – New York, 1977, 262 – 311 · Zbl 0407.18008
[10] A. A. Bei\?linson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy, 1981), v. I, Asterisque, 100, Soc. Math. France, Paris, 1983 · Zbl 0536.14011
[11] А. И. Бондал, “Представления ассоциативных алгебр и когерентные пучки”, Изв. АН СССР. Сер. матем., 53:1 (1989), 25 – 44 · Zbl 0692.18002
[12] A. I. Bondal, “Representations of associative algebras and coherent sheaves”, Math. USSR Izv., 34:1 (1990), 23 – 42 · Zbl 0692.18002
[13] J.-L. Verdier, “Base change for twisted inverse image of coherent sheaves”, Algebraic geometry (Bombay, 1968), Oxford Univ. Press, London, 1969, 393 – 408 · Zbl 0202.19902
[14] J. Lipman, M. Hashimoto, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Math., 1960, Springer-Verlag, Berlin, 2009 · Zbl 1163.14001
[15] R. Hartshorne, Residues and duality, Lect. Notes in Math., 20, Springer-Verlag, Berlin – Heidelberg – New York, 1966 · Zbl 0212.26101
[16] К. Оконек, М. Шнейдер, Х. Шпиндлер, Векторные расслоения на комплексных проективных пространствах, Математика. Новое в зарубежной науке, 36, Мир, М., 1984 · Zbl 0598.32022
[17] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhaüser, Boston, MA, 1980 · Zbl 0438.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.