×

Fast electromagnetic imaging of thin inclusions in half-space affected by random scatterers. (English) Zbl 1274.78061

Summary: We consider an inverse scattering problem wherein penetrable thin electromagnetic inclusions completely embedded in a half-space are surrounded by randomly distributed scatterers. A non-iterative algorithm for retrieving the shape of the inclusions is discussed. It is based on the fact that Multi-static Response (MSR) matrix data can be modeled via a rigorous asymptotic expansion formula of the scattering amplitude in the presence of the inclusions. Various numerical implementations show that the proposed algorithm performs satisfactorily for single and multiple thin inclusions, even with a fair number of random scatterers affecting the data.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/j.jcp.2009.07.026 · Zbl 1175.78015 · doi:10.1016/j.jcp.2009.07.026
[2] Park W-K, Inverse Problems 25 (2009)
[3] DOI: 10.1137/040610854 · Zbl 1075.35101 · doi:10.1137/040610854
[4] Park W-K, Inverse Problems 26 (2010)
[5] DOI: 10.1088/0266-5611/23/5/003 · Zbl 1130.78011 · doi:10.1088/0266-5611/23/5/003
[6] DOI: 10.1121/1.1502266 · doi:10.1121/1.1502266
[7] DOI: 10.1088/0266-5611/18/5/303 · Zbl 1047.74032 · doi:10.1088/0266-5611/18/5/303
[8] Ammari H, Lecture Notes in Mathematics 1846 (2004)
[9] Beretta E, Contemp. Math. 333 pp 49– (2000)
[10] DOI: 10.1051/proc:072204 · Zbl 1138.78328 · doi:10.1051/proc:072204
[11] Ammari H, Applied Mathematical Sciences Series 162 (2007)
[12] DOI: 10.1137/090748639 · Zbl 1202.35343 · doi:10.1137/090748639
[13] DOI: 10.1137/090749013 · Zbl 1210.35279 · doi:10.1137/090749013
[14] DOI: 10.1121/1.3035835 · doi:10.1121/1.3035835
[15] DOI: 10.1080/00036810310001620090 · Zbl 1047.35130 · doi:10.1080/00036810310001620090
[16] DOI: 10.1080/00036810500277736 · Zbl 1092.35115 · doi:10.1080/00036810500277736
[17] DOI: 10.1051/proc/2009015 · Zbl 1165.35482 · doi:10.1051/proc/2009015
[18] DOI: 10.2528/PIER05022003 · doi:10.2528/PIER05022003
[19] DOI: 10.1121/1.2042987 · doi:10.1121/1.2042987
[20] DOI: 10.1002/0471224308 · doi:10.1002/0471224308
[21] DOI: 10.1016/j.jcp.2009.04.038 · Zbl 1173.78309 · doi:10.1016/j.jcp.2009.04.038
[22] DOI: 10.1088/0266-5611/22/4/R01 · Zbl 1191.35272 · doi:10.1088/0266-5611/22/4/R01
[23] Park W-K, Inverse Problems 25 (2009)
[24] DOI: 10.1088/0266-5611/24/1/015002 · Zbl 1137.78319 · doi:10.1088/0266-5611/24/1/015002
[25] DOI: 10.1137/050640655 · Zbl 1132.78308 · doi:10.1137/050640655
[26] DOI: 10.1088/0266-5611/11/4/015 · Zbl 0842.35135 · doi:10.1088/0266-5611/11/4/015
[27] DOI: 10.1051/proc/2009009 · Zbl 1165.35479 · doi:10.1051/proc/2009009
[28] DOI: 10.1109/TAP.2007.904103 · doi:10.1109/TAP.2007.904103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.