Das Problem der Abzählreime und Zahlentwicklungen mit gebrochenen Basen. (The problem of counting-out rhymes and expansion of numbers into fractional bases). (German) Zbl 0622.10005

Es werden Resultate über die Entwicklung natürlicher Zahlen nach gebrochenen Basen r/s \((r>s\), r,s teilerfremd) bewiesen und diese auf Probleme angewendet, die sich populär in der Frage nach der letzten verbleibenden von n Personen bei Anwendung eines k-silbigen Abzählreims formulieren lassen.
Reviewer: P.Kirschenhofer


11A63 Radix representation; digital problems
Full Text: DOI


[1] Eggan, L. C.; Vanden Eynden, C. L., “Decimal” expansions to nonintegral bases, Amer. Math. Monthly, 73 (1966) · Zbl 0138.03402
[2] Gardner, M., Kopf oder Zahl (1978), Weinheim
[3] Kobert, H., On quasi-decimals and on arithmetical properties of certain perfect sets and monotone functions, J. London Math. Soc., 28 (1953) · Zbl 0050.27705
[4] Schubert, H., Zwölf Geduldsspiele (1895), Berlin
[5] Schuh, F., (The Master Book of Mathematical Recreation (1968), Dover: Dover New York), Sects. 298-301 · Zbl 0191.27406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.