Finkel, Allan; Isaacson, Eli; Trubowitz, Eugene An explicit solution of the inverse periodic problem for Hill’s equation. (English) Zbl 0622.34021 SIAM J. Math. Anal. 18, 46-53 (1987). Let \(-d^ 2/dx^ 2+q(x)\) be the Hill’s operator with \(q\in L_{{\mathbb{R}}^ 2}(S^ 1)\). The authors give an explicit formula for the isospectral manifold of all potentials having the same spectrum as q. Reviewer: H.Rüssmann Cited in 1 ReviewCited in 14 Documents MSC: 34L99 Ordinary differential operators 34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.) 34C25 Periodic solutions to ordinary differential equations Keywords:inverse problem; Hill’s operator; isospectral manifold; spectrum PDF BibTeX XML Cite \textit{A. Finkel} et al., SIAM J. Math. Anal. 18, 46--53 (1987; Zbl 0622.34021) Full Text: DOI