zbMATH — the first resource for mathematics

On the Stiefel-Whitney classes and the span of real Grassmannians. (English) Zbl 0622.57018
Continuing his previous research with V. Bártík [Rend. Circ. Mat. Palermo, II. Ser. 6, 19-29 (1984; Zbl 0566.57012)], the author first deduces the explicit formulae for the Stiefel-Whitney classes \(w_{10}\), \(w_{12}\), \(w_{14}\) and \(w_{16}\) of the Grassmann manifold \(G_{n,r}\) of all r-planes in a real n-space. This is applied for determining some further estimates for span \(G_{n,r}\), i.e. for the maximal number of linearly independent vector fields on \(G_{n,r}\).
Reviewer: I.Kolář

57R25 Vector fields, frame fields in differential topology
57R20 Characteristic classes and numbers in differential topology
57T15 Homology and cohomology of homogeneous spaces of Lie groups
Full Text: EuDML
[1] Adams J. F.: Vector fields on spheres. Ann. Math. 75, 603 - 632 (1962). · Zbl 0112.38102
[2] Andrews G. E.: The theory of partitions. Encyclopedia of Mathematics and its Applications 2. London, Amsterdam, Don Mills-Ontario, Sydney, Tokyo: Addison-Wesley Publishing Company 1976. · Zbl 0371.10001
[3] Bartík V., Korbaš J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds. Rend. Circ. Mat. Palermo (2) (Suppl. 6), 19-29 (1984). · Zbl 0566.57012
[4] Borel A.: La cohomologie mod 2 de certains espaces homogènes. Comment. Math. Helvetici 27, 165-197 (1953). · Zbl 0052.40301
[5] Hsiang W. C, Szczarba R. H.: On the tangent bundle of a Grassmann manifold. Amer. J. Math. 86, 698-704 (1964). · Zbl 0151.31702
[6] Korbaš J.: Vector fields on real flag manifolds. Ann. Glob. Analysis and Geometry 3, 173-184 (1985). · Zbl 0579.57017
[7] Korbaš J.: Some partial formulae for Stiefel-Whitney classes of Grassmannians. · Zbl 0623.57014
[8] Leite M. L., de Miatello I. D.: Linear vector fields on \(\tilde{G}_k(R^n)\). Proc. Amer. Math. Soc. 80, 673-677 (1980). · Zbl 0453.57016
[9] Milnor J. W., Stasheff J. D.: Characteristic classes. Annals of Mathematics Studies 16. Princeton: Princeton University Press 1974. · Zbl 0298.57008
[10] Thomas E.: On tensor products of \(n\)-plane bundles. Arch. Math. X, 174-179 (1959). · Zbl 0192.29501
[11] Thomas E.: Postnikov invariants and higher order cohomology operations. Ann. Math. 85, 184-217 (1967). · Zbl 0152.22002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.