zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Algorithms for determination of period-doubling bifurcation points in ordinary differential equations. (English) Zbl 0622.65069
The paper presents four new algorithms for evaluating period-doubling bifurcation points in periodic solutions of autonomous and nonautonomous systems. These algorithms can be used for systems of low order $(n<20)$. The use of the algorithms is limited by the applicability of the shooting method.
Reviewer: Yu.V.Kostarchuk

65L99Numerical methods for ODE
37-99Dynamic systems and ergodic theory (MSC2000)
Full Text: DOI
[1] Mittelmann, H. D.; Weber, H.: Numerical methods for bifurcation problems -- a survey and classification. Bifurcation problems and their numerical solution (1980) · Zbl 0458.65037
[2] Kubiček, M.; Marek, M.: Computational methods in bifurcation theory and dissipative structures. (1983)
[3] Küpper, T.; Mittelmann, H. D.; Weber, H.: Numerical methods for bifurcation problems. (1984) · Zbl 0535.00021
[4] Jepson, A. D.; Keller, H. B.: Numerical methods for bifurcation problems. 219 (1984) · Zbl 0566.65041
[5] Holodniok, M.; Kubiček, M.: J. comput. Phys.. 55, 254 (1984)
[6] Sattinger, D. H.: Bull. amer. Math. soc.. 3, 779 (1980)
[7] Iooss, G.; Joseph, D. D.: Elementary stability and bifurcation theory. (1981) · Zbl 0512.58026
[8] Becker, K. H.; Seydel, R.: A Duffing equation with more than 20 branch points. Lecture notes in math. 878, 99 (1981) · Zbl 0461.65065
[9] Kubiček, M.; Holodniok, M.: Numerical methods for bifurcation problems. 247 (1984)
[10] Francescini, V.: J. stat. Phys.. 22, 397 (1980)
[11] Francescini, V.; Tebaldi, C.: J. stat. Phys.. 21, 707 (1979)
[12] Tadeschini-Lalli, L.: J. stat. Phys.. 27, 365 (1982)
[13] Feigenbaum, M. J.: J. stat. Phys.. 6, 669 (1979)
[14] Feigenbaum, M. J.: Phys. lett. A. 74, 375 (1979)
[15] Collet, P.; Eckmann, J. P.; Koch, H.: J. stat. Phys.. 25, 1 (1981)
[16] Wilkinson, J. H.; Reinsch, C.: Handbook for automatic computation, II. Linear algebra. (1971) · Zbl 0219.65001
[17] Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. (1955) · Zbl 0064.33002
[18] Ortega, J. M.; Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. (1970) · Zbl 0241.65046
[19] Nicolis, G.; Prigogine, I.: Self-organization in nonequilibrium systems. (1977) · Zbl 0363.93005
[20] Schreiber, I.; Kubiček, M.; Marek, M.: On coupled cells. New approaches to nonlinear problems in dynamics, 496 (1980)
[21] Lorenz, E. N.: J. atmos. Sci.. 20, 130 (1963)
[22] Shimizu, T.; Morioka, N.: Phys. lett. A. 66, 192 (1978)
[23] Holodniok, M.; Kubiček, M.; Marek, M.: Stable and unstable periodic solutions in the Lorenz model. Institut für Mathematik, TUM-M8217 (1982) · Zbl 0507.76055
[24] Tomita, K.; Kai, T.: Phys. lett. A. 66, 91 (1978)
[25] Tomita, K.: Phys. rep.. 86, 113 (1982)
[26] Schreiber, I.; Holodniok, M.; Kubiček, M.; Marek, M.: J. stat. Phys.. 43, 489 (1986)
[27] Holodniok, M.; Kubiček, M.: Computation of period doubling bifurcation points in ordinary differential equations. Institut für Mathematik, TUM-M8406 (1984) · Zbl 0577.65074
[28] Somr, Z.: MS. thesis. (1984)
[29] M. Kubiček, M. Holodniok, and A. Klič, in preparation.