×

zbMATH — the first resource for mathematics

A new finite element formulation for computational fluid dynamics. II. Beyond SUPG. (English) Zbl 0622.76074
[For part I see ibid. 54, 223-234 (1986; Zbl 0581.76077; Zbl 0572.76068).]
A discontinuity-capturing term is added to the streamline-upwind/Petrov- Galerkin weighting function for the scalar advection-diffusion equation. The additional term enhances the ability of the method to produce smooth yet crisp approximations to internal and boundary layers.

MSC:
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
80A20 Heat and mass transfer, heat flow (MSC2010)
65Z05 Applications to the sciences
76R99 Diffusion and convection
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyris, J.H.; Doltsinis, J.St.; Pimenta, P.M.; Wüstenberg, H., Natural finite element techniques for viscous fluid motion, Comput. meths. appl. mech. engrg., 45, 3-55, (1984) · Zbl 0541.76004
[2] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin methods for advection dominated flows, () · Zbl 0449.76077
[3] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. meths. appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[4] Carey, G.F.; Oden, J.T., ()
[5] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Zienkiewicz, O.C., Finite element methods for second order differential equations with significant first derivatives, Internat. J. numer. meths. engrg., 10, 1389-1396, (1976) · Zbl 0342.65065
[6] Davis, S.F., A rotationally biased upwind difference scheme for the Euler equations, J. comput. phys., 56, 65-92, (1984) · Zbl 0557.76067
[7] Huang, M.D., Constant-flow patch test—a unique guideline for the evaluation of discretization schemes for the current continuity equations, (1985), to appear.
[8] Hughes, T.J.R.; Brooks, A.N., A multidimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[9] Hughes, T.J.R.; Brooks, A.N., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline upwind procedure, (), 46-65
[10] Hughes, T.J.R.; Mallet, M.; Taki, Y.; Tezduyar, T.; Zanutta, R., A one dimensional shock capturing finite element method and multidimensional generalizations, ()
[11] Hughes, T.J.R.; Tezduyar, T.E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. meths. appl. mech. engrg, 45, 217-284, (1984) · Zbl 0542.76093
[12] Hughes, T.J.R.; Tezduyar, T.E.; Brooks, A.N., A Petrov-Galerkin finite element formulation for systems of conservation laws with special references to the compressible Euler equations, (), 97-125 · Zbl 0505.76077
[13] Ikeda, T., Maximum principle in finite element models for convection-diffusion phenomena, (1983), North-Holland Amsterdam · Zbl 0508.65049
[14] Johnson, C., Finite element methods for convection-diffusion problems, () · Zbl 0505.76099
[15] Johnson, C., Streamline diffusion methods for problems in fluid mechanics, ()
[16] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problem, Comput. meths. appl. mech. engrg., 45, 285-312, (1984) · Zbl 0526.76087
[17] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., to appear. · Zbl 0607.76025
[18] Mizukami, A.; Hughes, T.J.R., A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique for satsifying the maximum principle, Comput. meths. appl. mech. engrg., 50, 181-193, (1985) · Zbl 0553.76075
[19] Nävert, U., A finite element methods for convection-diffusion problems, ()
[20] Rice, J.G.; Schnipke, R.J., A monotone streamline upwind finite element method for convection-dominated flows, Comput. meth. appl. mech. engrg., 48, 313-327, (1985) · Zbl 0553.76073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.