×

Penalty-proximal methods in convex programming. (English) Zbl 0622.90065

An implementable algorithm for constrained nonsmooth convex programs with the proximal method. In the case of a linear program, the convergence is finite.

MSC:

90C25 Convex programming
65K05 Numerical mathematical programming methods
90C55 Methods of successive quadratic programming type
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lemarechal, C.,An Extension of Davidon Methods to Nondifferentiable Problems, Mathematical Programming Study, Vol. 3, pp. 93-109, 1975. · Zbl 0358.90051
[2] Lemarechal, C.,Bundle Methods in Nonsmooth Optimization, Nonsmooth Optimization, Edited by C. Lemarechal and R. Mifflin, Pergamon Press, Oxford, England, 1978. · Zbl 0398.90088
[3] Wolfe, P.,A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions, Mathematical Programming Study, Vol. 3, pp. 145-173, 1975. · Zbl 0369.90093
[4] Mifflin, R.,A Superlinearly Convergent Algorithm for One-Dimensional Constrained Minimization Problems with Convex Functions, Mathematics of Operations Research, Vol. 8, pp. 185-195, 1983. · Zbl 0514.90070
[5] Lemarechal, C., Strodiot, J. J., andBihain, A.,On a Bundle Algorithm for Nonsmooth Optimization, Nonlinear Programming 4, Edited by O. Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, New York, pp. 246-282, 1981.
[6] Kiwiel, K. C.,An Algorithm for Linearly Constrained Convex Nondifferentiable Minimization Problems, Journal of Mathematical Analysis and Applications, Vol. 105, pp. 446-452, 1985. · Zbl 0564.90053
[7] Auslender, A.,Numerical Methods for Nondifferentiable Convex Optimization, Mathematical Programming Study, Vol. 30, pp. 102-127, 1987. · Zbl 0616.90052
[8] Martinet, B.,Regularization d’Inégalités Variationnelles par Approximations Successives, Revue Française de Recherche Operationnelle, Vol. 3, pp. 154-159, 1970.
[9] Rockafellar, R. T.,Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming, Mathematics of Operations Research, Vol. 4, pp. 97-116, 1976. · Zbl 0402.90076
[10] Rockafellar, R. T.,Monotone Operators and the Proximal Point Algorithm, SIAM Journal on Control and Optimization, Vol. 14, pp. 877-898, 1976. · Zbl 0358.90053
[11] Fukushima, M.,A Descent Algorithm for Nonsmooth Convex Programming, Mathematical Programming, Vol. 30, pp. 163-175, 1984. · Zbl 0545.90082
[12] Huard, P.,Programmation Mathematique Convexe, Revue d’Informatique et de Recherche Operationnelle, Vol. 7, pp. 43-59, 1968. · Zbl 0159.48602
[13] Kaplan, A. A.,On Convex Programming with Internal Regularization, Soviet Mathematics, Doklady Akademii Nauk, Vol. 19, pp. 795-799, 1975. · Zbl 0423.90061
[14] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[15] Pchenitchny, B., andDaniline, Y.,Méthodes Numériques dans les Problèmes d’Extremums, MIR, Moscow, USSR, 1977.
[16] Bertsekas, D. P.,Necessary and Sufficient Conditions for a Penalty Method to Be Exact, Mathematical Programming, Vol. 9, pp. 87-100, 1975. · Zbl 0325.90055
[17] Kiwiel, K. C.,Descent Methods for Constrained Nonsmooth Optimization, Abstracts of the IIASA Meeting on Nondifferentiable Optimization, Sopron, Hungary, 1984.
[18] Kiwiel, K. C.,An Exact Penalty Function Algorithm for Nonsmooth Convex Minimization Problems, INA Journal of Numerical Analysis, Vol. 5, pp. 111-119, 1985. · Zbl 0561.65042
[19] Mangasarian, O. L.,Iterative Solution of Linear Programs, SIAM Journal on Numerical Analysis, Vol. 18, pp. 606-614, 1981. · Zbl 0471.65033
[20] Rockafellar, R. T.,Monotone Operators and Augmented Lagrangian Methods, Nonlinear Programming 3, Edited by O. Mangasarian, R. R. Meyer, and S. M. Robinson, Academic Press, New York, New York, pp. 1-15, 1978. · Zbl 0458.90050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.