×

Finite time singularities for the free boundary incompressible Euler equations. (English) Zbl 1291.35199

The 2D incompressible free boundary Euler problem is used to study the evolution of a fluid region and a vacuum region separated by a smooth (initial) interface. The fluid is irrotational and the surface tension is neglected. The main point is to describe the evolution of the vacuum-fluid interface \(WF\). Even if at the initial moment \(WF\) is smooth (but not necessary a graph), after a finite time a singularity appears – the curve touches itself. Numerical results, based on the Beale-Hou-Lovengrub method, are used to motivate some conjectures. Then the authors explain what results can be proved. Interval arithmetic is used to produce a rigorous computer-assisted proof for the existence of an exact solution, close to the approximate numerical solution, which ends into a particular singularity. A local existence for analytic initial data in a transformed (“tilda”) domain is proved, by using the abstract form of the Cauchy-Kowalewski theorem.

MSC:

35Q31 Euler equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D27 Other free boundary flows; Hele-Shaw flows
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35B44 Blow-up in context of PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] T. Alazard, N. Burq, and C. Zuily, ”On the water-wave equations with surface tension,” Duke Math. J., vol. 158, iss. 3, pp. 413-499, 2011. · Zbl 1258.35043
[2] T. Alazard and G. Métivier, ”Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves,” Comm. Partial Differential Equations, vol. 34, iss. 10-12, pp. 1632-1704, 2009. · Zbl 1207.35082
[3] B. Alvarez-Samaniego and D. Lannes, ”Large time existence for 3D water-waves and asymptotics,” Invent. Math., vol. 171, iss. 3, pp. 485-541, 2008. · Zbl 1131.76012
[4] D. M. Ambrose and N. Masmoudi, ”The zero surface tension limit of two-dimensional water waves,” Comm. Pure Appl. Math., vol. 58, iss. 10, pp. 1287-1315, 2005. · Zbl 1086.76004
[5] G. R. Baker, D. I. Meiron, and S. A. Orszag, ”Generalized vortex methods for free-surface flow problems,” J. Fluid Mech., vol. 123, pp. 477-501, 1982. · Zbl 0507.76028
[6] T. J. Beale, T. Y. Hou, and J. Lowengrub, ”Convergence of a boundary integral method for water waves,” SIAM J. Numer. Anal., vol. 33, iss. 5, pp. 1797-1843, 1996. · Zbl 0858.76046
[7] T. J. Beale, T. Y. Hou, and J. S. Lowengrub, ”Growth rates for the linearized motion of fluid interfaces away from equilibrium,” Comm. Pure Appl. Math., vol. 46, iss. 9, pp. 1269-1301, 1993. · Zbl 0796.76041
[8] A. Castro, D. Córdoba, C. L. Fefferman, F. Gancedo, and J. Gómez-Serrano, ”Splash singularity for water waves,” Proc. Natl. Acad. Sci. USA, vol. 109, iss. 3, pp. 733-738, 2012. · Zbl 1256.76018
[9] A. Castro, D. Córdoba, C. L. Fefferman, F. Gancedo, and M. López-Fernández, ”Turning waves and breakdown for incompressible flows,” Proc. Natl. Acad. Sci. USA, vol. 108, iss. 12, pp. 4754-4759, 2011. · Zbl 1256.76019
[10] &. Castro, D. Córdoba, C. Fefferman, F. Gancedo, and M. López-Fernández, ”Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves,” Ann. of Math., vol. 175, iss. 2, pp. 909-948, 2012. · Zbl 1267.76033
[11] &. Castro, D. Córdoba, and F. Gancedo, ”A naive parametrization for the vortex-sheet problem,” in Mathematical Aspects of Fluid Mechanics, Cambridge: Cambridge Univ. Press, 2012, pp. 88-115. · Zbl 1296.76022
[12] <a href=’http://dx.doi.org/10.1002/1097-0312(200012)53:123.0.CO;2-Q’ title=’Go to document’> D. Christodoulou and H. Lindblad, ”On the motion of the free surface of a liquid,” Comm. Pure Appl. Math., vol. 53, iss. 12, pp. 1536-1602, 2000. · Zbl 1031.35116
[13] A. Córdoba, D. Córdoba, and F. Gancedo, ”Interface evolution: water waves in 2-D,” Adv. Math., vol. 223, iss. 1, pp. 120-173, 2010. · Zbl 1183.35276
[14] A. Córdoba, D. Córdoba, and F. Gancedo, ”Interface evolution: the Hele-Shaw and Muskat problems,” Ann. of Math., vol. 173, iss. 1, pp. 477-542, 2011. · Zbl 1229.35204
[15] A. Córdoba, D. Córdoba, and F. Gancedo, ”Porous media: the Muskat problem in three dimensions,” Anal. PDE, vol. 6, iss. 2, pp. 447-497, 2013. · Zbl 1273.35221
[16] D. Coutand and S. Shkoller, ”Well-posedness of the free-surface incompressible Euler equations with or without surface tension,” J. Amer. Math. Soc., vol. 20, iss. 3, pp. 829-930, 2007. · Zbl 1123.35038
[17] D. Coutand and S. Shkoller, On the finite-time splash singularity for the 3-D free-surface Euler equations, 2012. · Zbl 1285.35071
[18] W. Craig, ”An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits,” Comm. Partial Differential Equations, vol. 10, iss. 8, pp. 787-1003, 1985. · Zbl 0577.76030
[19] P. Germain, N. Masmoudi, and J. Shatah, ”Global solutions for the gravity water waves equation in dimension 3,” C. R. Math. Acad. Sci. Paris, vol. 347, iss. 15-16, pp. 897-902, 2009. · Zbl 1177.35168
[20] P. Germain, N. Masmoudi, and J. Shatah, ”Global solutions for the gravity water waves equation in dimension 3,” Ann. of Math., vol. 175, iss. 2, pp. 691-754, 2012. · Zbl 1241.35003
[21] D. Lannes, ”Well-posedness of the water-waves equations,” J. Amer. Math. Soc., vol. 18, iss. 3, pp. 605-654, 2005. · Zbl 1069.35056
[22] D. Lannes, ”A stability criterion for two-fluid interfaces and applications,” Arch. Ration. Mech. Anal., vol. 208, iss. 2, pp. 481-567, 2013. · Zbl 1278.35194
[23] H. Lindblad, ”Well-posedness for the motion of an incompressible liquid with free surface boundary,” Ann. of Math., vol. 162, iss. 1, pp. 109-194, 2005. · Zbl 1095.35021
[24] R. E. Moore, Methods and Applications of Interval Analysis, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1979, vol. 2. · Zbl 0417.65022
[25] V. I. Nalimov, ”The Cauchy-Poisson problem,” Dinamika Splo\vsn. Sredy, iss. Vyp. 18 Dinamika Zidkost. so Svobod. Granicami, pp. 104-210, 254, 1974.
[26] L. Nirenberg, ”An abstract form of the nonlinear Cauchy-Kowalewski theorem,” J. Differential Geometry, vol. 6, pp. 561-576, 1972. · Zbl 0257.35001
[27] T. Nishida, ”A note on a theorem of Nirenberg,” J. Differential Geom., vol. 12, iss. 4, pp. 629-633 (1978), 1977. · Zbl 0368.35007
[28] J. Shatah and C. Zeng, ”Geometry and a priori estimates for free boundary problems of the Euler equation,” Comm. Pure Appl. Math., vol. 61, iss. 5, pp. 698-744, 2008. · Zbl 1174.76001
[29] C. Sulem and P. -L. Sulem, ”Finite time analyticity for the two- and three-dimensional Rayleigh-Taylor instability,” Trans. Amer. Math. Soc., vol. 287, iss. 1, pp. 127-160, 1985. · Zbl 0517.76051
[30] S. Wu, ”Well-posedness in Sobolev spaces of the full water wave problem in \(2\)-D,” Invent. Math., vol. 130, iss. 1, pp. 39-72, 1997. · Zbl 0892.76009
[31] S. Wu, ”Well-posedness in Sobolev spaces of the full water wave problem in 3-D,” J. Amer. Math. Soc., vol. 12, iss. 2, pp. 445-495, 1999. · Zbl 0921.76017
[32] S. Wu, ”Almost global wellposedness of the 2-D full water wave problem,” Invent. Math., vol. 177, iss. 1, pp. 45-135, 2009. · Zbl 1181.35205
[33] S. Wu, ”Global wellposedness of the 3-D full water wave problem,” Invent. Math., vol. 184, iss. 1, pp. 125-220, 2011. · Zbl 1221.35304
[34] H. Yosihara, ”Gravity waves on the free surface of an incompressible perfect fluid of finite depth,” Publ. Res. Inst. Math. Sci., vol. 18, iss. 1, pp. 49-96, 1982. · Zbl 0493.76018
[35] P. Zhang and Z. Zhang, ”On the free boundary problem of three-dimensional incompressible Euler equations,” Comm. Pure Appl. Math., vol. 61, iss. 7, pp. 877-940, 2008. · Zbl 1158.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.