×

Characters of relative \(p^\prime\)-degree over normal subgroups. (English) Zbl 1372.20016

Authors’ abstract: Let \(Z\) be a normal subgroup of a finite group \(G\), let \(\lambda \in \mathrm{Irr}(Z)\) be an irreducible complex character of \(Z\), and let \(p\) be a prime number. If \(p\) does not divide the integers \(\chi(1)/\lambda(1)\) for all \(\chi \in \mathrm{Irr}(G)\) lying over \(\lambda\), then we prove that the Sylow \(p\)-subgroups of \(G/Z\) are abelian. This theorem, which generalizes the Gluck-Wolf theorem to arbitrary finite groups, is one of the principal obstacles to proving the celebrated Brauer height zero conjecture.

MSC:

20C15 Ordinary representations and characters
20C20 Modular representations and characters
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure

Software:

GAP
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] T. R. Berger and R. Knörr, ”On Brauer’s height \(0\) conjecture,” Nagoya Math. J., vol. 109, pp. 109-116, 1988. · Zbl 0637.20006
[2] R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, New York: John Wiley & Sons, 1985. · Zbl 0567.20023
[3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups, Eynsham: Oxford University Press, 1985. · Zbl 0568.20001
[4] E. C. Dade, ”Counting characters in blocks with cyclic defect groups. I,” J. Algebra, vol. 186, iss. 3, pp. 934-969, 1996. · Zbl 0873.20006
[5] E. C. Dade, ”Counting characters in blocks. II,” J. Reine Angew. Math., vol. 448, pp. 97-190, 1994. · Zbl 0790.20020
[6] F. Digne and J. Michel, Representations of finite groups of Lie type, Cambridge: Cambridge Univ. Press, 1991. · Zbl 0815.20014
[7] . T. GAP, GAP- groups, algorithms, and programming, 2004.
[8] M. Giudici, M. Liebeck, C. Praeger, J. Saxl, and P. H. Tiep, Arithmetic results on orbits of linear groups. · Zbl 1382.20003
[9] D. Gluck and T. R. Wolf, ”Defect groups and character heights in blocks of solvable groups. II,” J. Algebra, vol. 87, iss. 1, pp. 222-246, 1984. · Zbl 0534.20003
[10] D. Gluck and T. R. Wolf, ”Brauer’s height conjecture for \(p\)-solvable groups,” Trans. Amer. Math. Soc., vol. 282, iss. 1, pp. 137-152, 1984. · Zbl 0543.20007
[11] R. M. Guralnick and P. H. Tiep, ”The non-coprime \(k(GV)\) problem,” J. Algebra, vol. 293, iss. 1, pp. 185-242, 2005. · Zbl 1083.20006
[12] M. I. Isaacs, Character Theory of Finite Groups, Providence, RI: AMS Chelsea Publishing, 2006. · Zbl 1119.20005
[13] M. I. Isaacs, ”Characters of \(\pi \)-separable groups,” J. Algebra, vol. 86, iss. 1, pp. 98-128, 1984. · Zbl 0526.20006
[14] M. I. Isaacs, G. Malle, and G. Navarro, ”A reduction theorem for the McKay conjecture,” Invent. Math., vol. 170, iss. 1, pp. 33-101, 2007. · Zbl 1138.20010
[15] C. Jansen, K. Lux, R. Parker, and R. Wilson, An ATLAS of Brauer Characters, New York: The Clarendon Press Oxford University Press, 1995, vol. 11. · Zbl 0831.20001
[16] R. Kessar and G. Malle, ”Quasi-isolated blocks and Brauer’s height zero conjecture,” Ann. of Math., vol. 178, pp. 321-384, 2013. · Zbl 1317.20006
[17] R. Kessar and G. Malle, Brauer’s height zero conjecture for universal covering groups of simple groups. · Zbl 1437.20006
[18] W. Kimmerle and R. Sandling, ”Group-theoretic and group ring-theoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer,” J. Algebra, vol. 171, iss. 2, pp. 329-346, 1995. · Zbl 0840.20006
[19] A. S. Kleshchev and A. A. Premet, ”On second degree cohomology of symmetric and alternating groups,” Comm. Algebra, vol. 21, iss. 2, pp. 583-600, 1993. · Zbl 0798.20046
[20] H. Kurzweil and B. Stellmacher, Theorie der endlichen Gruppen, New York: Springer-Verlag, 1998. · Zbl 0902.20006
[21] M. W. Liebeck, ”The affine permutation groups of rank three,” Proc. London Math. Soc., vol. 54, iss. 3, pp. 477-516, 1987. · Zbl 0621.20001
[22] F. Lübeck, Conjugacy classes and character degrees of \({}^2 E_6(2)_{sc}\).
[23] F. Lübeck, Elements of order \(2\) and \(3\) in exceptional groups of Lie type.
[24] G. Lusztig, Characters of Reductive Groups over a Finite Field, Princeton, NJ: Princeton Univ. Press, 1984, vol. 107. · Zbl 0556.20033
[25] G. Lusztig, ”On the representations of reductive groups with disconnected centre,” in Orbites Unipotentes et Représentations, I, , 1988, vol. 168, p. 10, 157-166. · Zbl 0703.20036
[26] G. Malle, ”Height 0 characters of finite groups of Lie type,” Represent. Theory, vol. 11, pp. 192-220, 2007. · Zbl 1139.20008
[27] G. Malle, ”The inductive McKay condition for simple groups not of Lie type,” Comm. Algebra, vol. 36, iss. 2, pp. 455-463, 2008. · Zbl 1153.20009
[28] G. Malle, ”Extensions of unipotent characters and the inductive McKay condition,” J. Algebra, vol. 320, iss. 7, pp. 2963-2980, 2008. · Zbl 1163.20003
[29] G. O. Michler, ”A finite simple group of Lie type has \(p\)-blocks with different defects, \(p\neq 2\),” J. Algebra, vol. 104, iss. 2, pp. 220-230, 1986. · Zbl 0608.20005
[30] O. Manz and T. R. Wolf, Representations of Solvable Groups, Cambridge: Cambridge Univ. Press, 1993, vol. 185. · Zbl 0928.20008
[31] A. Moretó, ”An answer to a question of Isaacs on character degree graphs,” Adv. Math., vol. 201, iss. 1, pp. 90-101, 2006. · Zbl 1097.20012
[32] A. Moretó and P. H. Tiep, ”Prime divisors of character degrees,” J. Group Theory, vol. 11, iss. 3, pp. 341-356, 2008. · Zbl 1149.20008
[33] M. Murai, ”On Brauer’s height zero conjecture,” Proc. Japan Acad. Ser. A Math. Sci., vol. 88, iss. 3, pp. 38-40, 2012. · Zbl 1281.20012
[34] G. Navarro and B. Späth, On Brauer’s height zero conjecture. · Zbl 1353.20006
[35] G. Navarro and P. H. Tiep, ”Brauer’s height zero conjecture for the 2-blocks of maximal defect,” J. Reine Angew. Math., vol. 669, pp. 225-247, 2012. · Zbl 1280.20011
[36] B. Späth, ”A reduction theorem for the Alperin-McKay conjecture,” J. Reine Angew. Math., vol. 680, pp. 153-189, 2013. · Zbl 1283.20006
[37] P. H. Tiep and A. E. Zalesskii, ”Minimal characters of the finite classical groups,” Comm. Algebra, vol. 24, iss. 6, pp. 2093-2167, 1996. · Zbl 0901.20031
[38] K. Zsigmondy, ”Zur Theorie der Potenzreste,” Monatsh. Math. Phys., vol. 3, iss. 1, pp. 265-284, 1892. · JFM 24.0176.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.