×

Topologies and structures of the Cremona groups. (English) Zbl 1298.14020

The aim of the present paper is discuss the existence of topologies with special geometric properties on the Cremona group of two or more variables. Recall that for any base field \(\mathbf{k}\), the Cremona group \(\mathrm{Cr}_n(\mathbf{k})\) is the group of field automorphisms of \(\mathbf{k}(x_1, \ldots, x_n)\), or more geometrically the group of birational transformations of the projective space \(\mathbb{P}^n(\mathbf{k})\).
First the authors show that it is impossible to provide the group \(\mathrm{Cr}_n(\mathbf{k})\) with the structure of an ind-algebraic group or even an ind-stack, such that it becomes with this structure the universal object for families of birational transformations.
Next, for any locally compact field, the authors provide a natural topology called the Euclidean topology on \(\mathrm{Cr}_n(\mathbf{k})\), which is compatible this the group structure and with the usual topology of closed algebraic subgroups (of finite dimension), such as \(\mathrm{PGL}(n+1, \mathbf{k})\). This topology is not locally compact.

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] H. Bass, E. H. Connell, and D. Wright, ”The Jacobian conjecture: reduction of degree and formal expansion of the inverse,” Bull. Amer. Math. Soc., vol. 7, iss. 2, pp. 287-330, 1982. · Zbl 0539.13012
[2] C. Bisi, A. Calabri, and M. Mella, On plane Cremona transformations of fixed degree. · Zbl 1322.14034
[3] J. Blanc, ”Groupes de Cremona, connexité et simplicité,” Ann. Sci. École Norm. Sup., vol. 43, iss. 2, pp. 357-364, 2010. · Zbl 1193.14017
[4] N. Bourbaki, General Topology. Chapters 1-4, New York: Springer-Verlag, 1998. · Zbl 0894.54001
[5] M. Brion, ”Some basic results on actions of nonaffine algebraic groups,” in Symmetry and Spaces, Boston, MA: Birkhäuser, 2010, vol. 278, pp. 1-20. · Zbl 1217.14029
[6] S. Cantat and S. Lamy, ”Normal subgroups in the Cremona group,” Acta Math., vol. 210, iss. 1, pp. 31-94, 2013. · Zbl 1278.14017
[7] D. Cerveau and J. Déserti, Transformations birationnelles de petit degré. · Zbl 1284.14002
[8] M. Demazure, ”Sous-groupes algébriques de rang maximum du groupe de Cremona,” Ann. Sci. École Norm. Sup., vol. 3, pp. 507-588, 1970. · Zbl 0223.14009
[9] C. Favre, ”Le groupe de Cremona et ses sous-groupes de type fini,” in Séminaire Bourbaki, Paris: Soc. Math. France, 2010, vol. 332, p. exp. no. 998, vii, 11-43. · Zbl 1210.14015
[10] S. P. Franklin, ”Spaces in which sequences suffice,” Fund. Math., vol. 57, pp. 107-115, 1965. · Zbl 0132.17802
[11] A. Grothendieck, ”Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV,” Inst. Hautes Études Sci. Publ. Math., vol. 32, pp. 5-361, 1967. · Zbl 0153.22301
[12] J. E. Humphreys, Linear Algebraic Groups, New York: Springer-Verlag, 1975, vol. 21. · Zbl 0325.20039
[13] T. Kambayashi, ”Pro-affine algebras, Ind-affine groups and the Jacobian problem,” J. Algebra, vol. 185, iss. 2, pp. 481-501, 1996. · Zbl 0909.13013
[14] T. Kambayashi, ”Some basic results on pro-affine algebras and ind-affine schemes,” Osaka J. Math., vol. 40, iss. 3, pp. 621-638, 2003. · Zbl 1089.13015
[15] D. Mumford, ”Algebraic Geometry,” in Mathematical Developments Arising from Hilbert Problems, Browder, F. E., Ed., Providence, RI: Amer. Math. Soc., 1976, vol. XXVIII, pp. 44-45. · Zbl 0326.00002
[16] D. Nguyen, Groupe de Cremona.
[17] I. Pan, ”Une remarque sur la génération du groupe de Cremona,” Bol. Soc. Brasil. Mat., vol. 30, iss. 1, pp. 95-98, 1999. · Zbl 0972.14006
[18] I. Pan, F. Ronga, and T. Vust, ”Transformations birationnelles quadratiques de l’espace projectif complexe à trois dimensions,” Ann. Inst. Fourier \((\)Grenoble\()\), vol. 51, iss. 5, pp. 1153-1187, 2001. · Zbl 0987.14009
[19] . J-P. Serre, ”Le groupe de Cremona et ses sous-groupes finis,” in Séminaire Bourbaki, Paris: Soc. Math. France, 2010, vol. 332, pp. 75-100, exp. no. 1000, vii. · Zbl 1257.14012
[20] I. R. Shafarevich, ”On some infinite-dimensional groups,” Rend. Mat. e Appl., vol. 25, iss. 1-2, pp. 208-212, 1966. · Zbl 0149.39003
[21] I. R. Shafarevich, ”On some infinite-dimensional groups. II,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 45, iss. 1, pp. 214-226, 240, 1981. · Zbl 0475.14036
[22] I. Stampfli, ”On the topologies on ind-varieties and related irreducibility questions,” J. Algebra, vol. 372, pp. 531-541, 2012. · Zbl 1268.14004
[23] H. Weyl, ”On unitary metrics in projective space,” Ann. of Math., vol. 40, iss. 1, pp. 141-148, 1939. · Zbl 0020.07102
[24] J. H. C. Whitehead, ”Note on a theorem due to Borsuk,” Bull. Amer. Math. Soc., vol. 54, pp. 1125-1132, 1948. · Zbl 0041.31901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.