Hong, Nguyen Thanh; Tuan, Trinh; Thao, Nguyen Xuan On the Fourier cosine-Kontorovich-Lebedev generalized convolution transforms. (English) Zbl 1289.44005 Appl. Math., Praha 58, No. 4, 473-486 (2013). Summary: We deal with several classes of integral transformations of the form \[ f(x)\rightarrow D\int _{\mathbb {R}_{+}^2}\frac {1}{u}\left ( \mathrm{e}^{-u \cosh (x+v)}+\mathrm{e}^{-u \cosh (x-v)}\right )h(u)f(v) \mathrm{d}u \mathrm{d}v, \] where \(D\) is an operator. In the case that \(D\) is the identity operator, we obtain several operator properties on \(L_p(\mathbb {R}_{+})\) with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on \(L_2(\mathbb {R}_{+})\) and define the inversion formula. Further, for another class of differential operators of finite order, we apply these transformations to solve a class of integro-differential problems of generalized convolution type. Cited in 3 Documents MSC: 44A35 Convolution as an integral transform 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) 33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\) 45J05 Integro-ordinary differential equations 47A30 Norms (inequalities, more than one norm, etc.) of linear operators Keywords:convolution; Hölder inequality; Young’s theorem; Watson’s theorem; Fourier cosine; Kontorovich-Lebedev transform; integro-differential equation × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables. U.S. Department of Commerce, Washington, 1964. · Zbl 0171.38503 [2] R.A. Adams, J. J. F. Fournier: Sobolev Spaces, 2nd ed. Pure and Applied Mathematics 140. Academic Press, New York, 2003. · Zbl 1098.46001 [3] F. Al-Musallam, V.K. Tuan: Integral transforms related to a generalized convolution. Result. Math. 38 (2000), 197-208. · Zbl 0970.44004 · doi:10.1007/BF03322007 [4] L.E. Britvina: A class of integral transforms related to the Fourier cosine convolution. Integral Transforms Spec. Funct. 16 (2005), 379-389. · Zbl 1085.42003 · doi:10.1080/10652460412331320395 [5] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Tables of Integral Transforms, Vol. I. Bateman Manuscript Project. California Institute of Technology. McGraw-Hill Book Co., New York, 1954. · Zbl 0055.36401 [6] H.-J. Glaeske, A.P. Prudnikov, K.A. Skórnik: Operational Calculus and Related Topics. Analytical Methods and Special Functions 10. Chapman & Hall/CRC, Boca Raton, 2006. · Zbl 1105.44002 · doi:10.1201/9781420011494 [7] Y.N. Grigoriev, N.H. Ibragimov, V. F. Kovalev, S.V. Meleshko: Symmetries of Integro-Differential Equations. With Applications in Mechanics and Plasma Physics. Lecture Notes in Physics 806. Springer, Dordrecht, 2010. · Zbl 1203.45006 · doi:10.1007/978-90-481-3797-8 [8] M.A. Najmark: Normed Algebras. Translated from the Second Russian Edition by Leo F.Boron. 3rd Completely Revised American Ed. Wolters-Noordhoff Series of Monographs and Textbooks on Pure and Applied Mathematics. Wolters-Noordhoff Publishing, Groningen, 1972. · Zbl 0254.46025 [9] A.P. Prudnikov, Y.A. Brychkov, O. I. Marichev: Integrals and Series Vol. 2: Special Functions. Transl. from the Russian by N.M.Queen. Gordon & Breach Science Publishers, New York, 1986. · Zbl 0733.00004 [10] I.N. Sneddon: Fourier Transforms. McGray-Hill Book Company, New York, 1950. · Zbl 0038.26801 [11] E.C. Titchmarsh: Introduction to the Theory of Fourier Integrals. Third edition. Chelsea Publishing Co., New York, 1986. · Zbl 0017.40404 [12] T. Tuan: On the generalized convolution with a weight function for the Fourier cosine and the inverse Kontorovich-Lebedev integral transformations. Nonlinear Funct. Anal. Appl. 12 (2007), 325-341. · Zbl 1142.44007 [13] V.K. Tuan: Integral transforms of Fourier cosine convolution type. J. Math. Anal. Appl. 229 (1999), 519-529. · Zbl 0920.46035 · doi:10.1006/jmaa.1998.6177 [14] J. Wimp: A class of integral transforms. Proc. Edinb. Math. Soc., II. Ser. 14 (1964), 33-40. · Zbl 0127.05701 · doi:10.1017/S0013091500011202 [15] S.B. Yakubovich: Integral transforms of the Kontorovich-Lebedev convolution type. Collect. Math. 54 (2003), 99-110. · Zbl 1067.44004 [16] S.B. Yakubovich, L. E. Britvina: Convolutions related to the Fourier and Kontorovich-Lebedev transforms revisited. Integral Transforms Spec. Funct. 21 (2010), 259-276. · Zbl 1191.44002 · doi:10.1080/10652460903101919 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.