×

Subexponential estimates in the height theorem and estimates on numbers of periodic parts of small periods. (English. Russian original) Zbl 1294.16014

J. Math. Sci., New York 193, No. 4, 493-515 (2013); translation from Fundam. Prikl. Mat. 17(2011/12), No. 5, 21-54 (2012).
Shirshov’s height theorem has proven its strength in many parts of ring theory. The original proof of the theorem can provide bounds for the height. Until now all known upper bounds for the height (as a function in the cardinality \(l\) of the generating set of the algebra) are exponential. There are lower bounds known: these are polynomial ones.
Consider an alphabet with \(l\) letters, and take the set of all words that are not \(n\)-divisible. Recall here that a word is \(n\)-divisible if one can cut some initial segment of it, and divide the remainder into \(n\) consecutive subwords in decreasing order. (The order here is the usual lexicographical order.) Then Shirshov’s Theorem states that if \(A\) is a PI algebra in \(l\) generators then the set of the non \(n\)-divisible words in \(A\) is of bounded height with respect to the set of all words of length \(\leq n-1\).
The authors give an upper bound \(\Phi(n,l)\) for the height in this case: \(\Phi(n,l)=E_1l\cdot n^{E_2+12\log_3n}\); here \(E_1=4^{21\log_34+17}\) and \(E_2=30\log_34 +10\). The reader should note that the bound is subexponential. This upper bound allows the authors to give better upper bounds for the nilpotency index in the Nagata-Higman-Dubnov-Ivanov theorem. Let \(A\) be a nil algebra satisfying the identity \(x^d=0\). Suppose \(A\) is generated by \(l\) elements, then its nilpotency index has an upper bound which is also subexponential.
The authors give also other applications of these bounds. They study the essential height and its relation to the Gelfand-Kirillov dimension, and also applications to Ramsey theory.

MSC:

16R10 \(T\)-ideals, identities, varieties of associative rings and algebras
16N40 Nil and nilpotent radicals, sets, ideals, associative rings
68R15 Combinatorics on words
16P90 Growth rate, Gelfand-Kirillov dimension
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Ya. Belov, ”On a Shirshov basis for relatively free algebras of complexity n,” Mat. Sb., 135, No. 31, 373–384 (1988). · Zbl 0659.16012
[2] A. Ya. Belov, ”Some estimations for nilpotency of nil-algebras over a field of an arbitrary characteristic and height theorem,” Commun. Algebra, 20, No. 10, 2919–2922 (1992). · Zbl 0810.16023 · doi:10.1080/00927879208824497
[3] A. Ya. Belov, ”Rationality of Hilbert series for relatively free algebras,” Usp. Mat. Nauk, 52, No. 2, 153–154 (1997). · Zbl 0919.16018 · doi:10.4213/rm827
[4] A. Ya. Belov, ”Gelfand–Kirillov dimension of relatively free associative algebras,” Mat. Sb., 195, No. 12, 3–26 (2004). · Zbl 1090.16007 · doi:10.4213/sm862
[5] A. Ya. Belov, ”Burnside-type problems, height and independence theorems,” Fundam. Prikl. Mat., 13, No. 5, 19–79 (2007).
[6] A. Ya. Belov, V. V. Borisenko, and V. N. Latyshev, ”Monomial algebras,” J. Math. Sci., 87, No. 3, 3463–3575 (1997). · Zbl 0927.16018 · doi:10.1007/BF02355446
[7] A. Ya. Belov and M. I. Kharitonov, ”Subexponential estimates in Shirshov theorem on height,” Mat. Sb., 203, No. 4, 81–102 (2012), arXiv:1101.4909. · Zbl 1254.16015 · doi:10.4213/sm7853
[8] A. Ya. Belov and L. H. Rowen, Computational Aspects of Polynomial Identities, Research Notes Math., Vol. 9, Peters, Wellesley (2005). · Zbl 1076.16018
[9] J. Berstel and D. Perrin, ”The origins of combinatorics on words,” Eur. J. Combin., 28, 996–1022 (2007). · Zbl 1111.68092 · doi:10.1016/j.ejc.2005.07.019
[10] I. I. Bogdanov, ”Nagata–Higman theorem for semirings,” Fundam. Prikl. Mat., 7, No. 3, 651–658 (2001). · Zbl 1014.16047
[11] Gh. Chekanu, ”Local finiteness of algebras,” Mat. Issled., 105, 153–171, 198 (1988). · Zbl 0681.16010
[12] G. P. Chekanu, ”Independence and quasiregularity in algebras,” Dokl. Akad. Nauk, 337, No. 3 (1994). · Zbl 0846.16019
[13] G. P. Chekanu and E. P. Kozhukhar, ”Independence and nilpotency in algebras,” Izv. Akad. Nauk Respub. Moldova Mat., No. 2, 51–62, 92–93, 95 (1993). · Zbl 0831.16018
[14] Ye. S. Chibrikov, ”On Shirshov height of a finitely generated associative algebra satisfying an identity of degree four,” Izv. Altaisk. Gos. Univ., No. 1 (19), 52–56 (2001). · Zbl 1020.16016
[15] Gh. Ciocanu, ”Independence and quasiregularity in algebras. II,” Izv. Akad. Nauk Respub. Moldova Mat., No. 70, 70–77, 132, 134 (1997). · Zbl 1114.16304
[16] Dnestr Copy-Book: A Collection of Operative Information [in Russian], Inst. Mat. SO AN SSSR, Novosibirsk (1993).
[17] V. Drensky, Free Algebras and PI-Algebras: Graduate Course in Algebra, Springer, Singapore (2000). · Zbl 0936.16001
[18] V. Drensky and E. Formanek, Polynomial Identity Ring, Adv. Courses Math., Birkhäuser, Basel (2004). · Zbl 1077.16025
[19] A. Kanel-Belov and L. H. Rowen, ”Perspectives on Shirshov’s height theorem,” in: Selected Papers of A. I. Shirshov, Birkhäuser, Basel (2009), pp. 3–20.
[20] A. R. Kemer, ”Comments on Shirshov’s height theorem,” in: Selected Papers of A. I. Shirshov, Birkhäuser, Basel (2009), pp. 41–48.
[21] M. Kharitonov, ”Estimations of the particular periodicity in case of the small periods in Shirshov height theorem,” arXiv:1108.6295.
[22] M. I. Kharitonov. ”Two-sided estimates for essential height in Shirshov height theorem,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., No. 2, 24–28 (2012). · Zbl 1286.16021
[23] M. I. Kharitonov, ”Estimates for structure of piecewise periodicity in Shirshov height theorem,” Vestn. Mosk. Univ. Ser. 1 Mat. Mekh., to appear. · Zbl 1286.16022
[24] A. A. Klein, ”Indices of nilpotency in a PI-ring,” Arch. Math., 44, No. 4, 323–329 (1985). · Zbl 0552.16007 · doi:10.1007/BF01235774
[25] A. A. Klein, ”Bounds for indices of nilpotency and nility,” Arch. Math., 74, No. 1, 6–10 (2000). · Zbl 0972.16009 · doi:10.1007/PL00000410
[26] A. G. Kolotov, ”An upper estimate for height in finitely generated algebras with identities,” Sib. Mat. Zh., 23, No. 1, 187–189 (1982). · Zbl 0514.16012
[27] Ye. N. Kuzmin, ”On Nagata–Higman theorem,” in: Collection of Papers Dedicated to 60th Anniversary of Acad. Iliev, Sofia (1975), pp. 101–107.
[28] V. N. Latyshev, ”On Regev’s theorem on indentities in a tensor product of PI-algebras,” Usp. Mat. Nauk, 27, 213–214 (1972). · Zbl 0254.16013
[29] V. N. Latyshev, ”Combinatorial generators of polylinear polynomial identities,” Fundam. Prikl. Mat., 12, No. 2, 101–110 (2006).
[30] A. A. Lopatin, On the Nilpotency Degree of the Algebra with Identity x n = 0, arXiv:1106.0950v1. · Zbl 1276.16013
[31] M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, Cambridge (2002). · Zbl 1001.68093
[32] S. P. Mishchenko, ”A variant of the height theorem for Lie algebras,” Mat. Zametki, 47, No. 4, 83–89 (1990). · Zbl 0701.17014
[33] S. V. Pchelintsev, ”The height theorem for alternative algebras,” Mat. Sb., 124, No. 4, 557–567 (1984). · Zbl 0569.17012
[34] C. Procesi, Rings with Polynomial Identities, New York (1973). · Zbl 0262.16018
[35] Yu. P. Razmyslov, Identities of Algebras and Their Representations [in Russian], Nauka, Moscow (1989). · Zbl 0673.17001
[36] A. I. Shirshov, ”On rings with identical relations,” Mat. Sb., 43, No. 2, 277–283 (1957). · Zbl 0078.02402
[37] A. I. Shirshov, ”On some nonassociative nilrings and algebraic algebras,” Mat. Sb., 41, No. 3, 381–394 (1957). · Zbl 0078.02202
[38] V. A. Ufnarovsky, ”An independence theorem and its consequences,” Mat. Sb., 128 (170), No. 1 (9), 124–132 (1985). · Zbl 0598.15002
[39] V. A. Ufnarovsky, ”Combinatorial and asymptotical methods in algebra,” Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat. Fund. Napr., 57, 5–177 (1990).
[40] V. A. Ufnarovskii and G. P. Chekanu, ”Nilpotent matrices,” Mat. Issled., 85, 130–141, 155 (1985). · Zbl 0602.15019
[41] E. Zelmanov, ”On the nilpotency of nil algebras,” in: L. L. Avramov and K. B. Tchakirian, eds., Proc. 5th Nat. School in Algebra Held in Varna, Bulgaria, Sept. 24 – Oct. 4, 1986, Lect. Notes Math., Vol. 1352, Springer, Berlin (1988), pp. 227–240.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.