×

zbMATH — the first resource for mathematics

Structure of Gauss maps. (English. Russian original) Zbl 0623.14026
Funct. Anal. Appl. 21, No. 1-3, 32-41 (1987); translation from Funkts. Anal. Prilozh. 21, No. 1, 39-50 (1987).
The classical Gauss map \(\gamma\) : \(X^ n\to G(N,n)\) associates to a point x of a nonsingular projective algebraic variety \(X^ n\subset {\mathbb{P}}^ N\) the point in the Grassmann variety G(N,n) of n-dimensional linear subspaces in \({\mathbb{P}}^ N\) corresponding to the embedded tangent space \(T_{X,x}\) to X at x. Thus the fiber of \(\gamma\) over a point \(L\in G(N,n)\) is the set of points (with multiplicities) at which the embedded tangent space to X coincides with L. Similarly, for each \(n\leq m\leq N-1\) we consider the higher Gauss map \(\gamma_ m\) whose fiber over a point \(L\in G(N,m)\) coincides with the set of points \(x\in X\) such that \(T_{X,x}\subset L^ m\) (i.e. L is tangent to X at x). We study the structure of the maps \(\gamma_ m\) with special reference to the cases \(m=n\) and \(m=N-1\) and consider applications to tangencies, projections, varieties of small codimension etc.

MSC:
14N05 Projective techniques in algebraic geometry
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Ein, ”The ramification divisors for branched coverings of P k n ,” Math. Ann.,261, 483-485 (1982). · Zbl 0519.14005 · doi:10.1007/BF01457451
[2] W. Fulton and R. Lazarsfeld, ”Connectivity and its applications in algebraic geometry,” Lect. Notes Math.,862, 26-92 (1981). · Zbl 0484.14005 · doi:10.1007/BFb0090889
[3] P. Griffiths and J. Harris, ”Algebraic geometry and local differential geometry,” Ann. Sci. Ec. Norm. Sup.,12, 355-432 (1979). · Zbl 0426.14019
[4] A. Grothendieck, Elements de Geometrie Algebrique, Chap. II, Publ. Math. IHES, No. 8, Chap. IV2 (1961); Elements de Geometrie Algebrique, Chap. II, Publ. Math. IHES, No. 24 (1965).
[5] H. Hironaka and H. Matsumura, ”Formal functions and formal embeddings,” J. Math. Soc. Jpn.,20, 52-82 (1968). · Zbl 0157.27701 · doi:10.2969/jmsj/02010052
[6] K. Johnson, ”Immersion and embedding of projective varieties,” Acta Math.,140, 49-74 (1978). · Zbl 0373.14005 · doi:10.1007/BF02392303
[7] S. L. Kleiman, ”Numerical theory of singularities,” Usp. Mat. Nauk,35, No. 6, 69-148 (1980). · Zbl 0451.14020
[8] S. L. Kleiman, ”Concerning the dual variety,” in: Proc. 18th Scand. Congress Math. Aarhus, Birkhäuser Verlag, Basel?Boston?Stuttgart (1981), pp. 386-396. · Zbl 0468.14018
[9] M. E. Larsen, ”On the topology of complex projective manifolds,” Invent. Math.,19, 251-260 (1972). · Zbl 0255.32004 · doi:10.1007/BF01390209
[10] Z. Ran, ”The structure of Gausslike maps,” Compos. Math.,52, 171-177 (1984). · Zbl 0547.14004
[11] F. L. Zak, ”Surfaces with null Lefschetz cycles,” Mat. Zametki,13, 869-880 (1973). · Zbl 0275.14019
[12] F. L. Zak, ”Projections of algebraic varieties,” Mat. Sb.,116, 593-602 (1981). · Zbl 0484.14016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.