Carrillo, José Unicité des solutions du type Kruskov pour des problèmes elliptiques avec des termes de transport nonlinéaires. (Uniqueness of the Kruskov solution of elliptic problems with nonlinear convexion). (French) Zbl 0623.35030 C. R. Acad. Sci., Paris, Sér. I 303, 189 (1986). We prove uniqueness of Kruskov solution of the equation \[ -\Delta u+div(\beta (u))+au\ni f\geq 0 \] with homogeneous boundary datum. \(\beta\) is not necessarily continuous. Cited in 9 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 49Q05 Minimal surfaces and optimization 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35R05 PDEs with low regular coefficients and/or low regular data Keywords:uniqueness; Kruskov solution; homogeneous boundary datum PDF BibTeX XML Cite \textit{J. Carrillo}, C. R. Acad. Sci., Paris, Sér. I 303, 189 (1986; Zbl 0623.35030)