Regularized spectral shift function for one-dimensional Schrödinger operator with slowly decreasing potential. (English) Zbl 0623.47060

Translation from Sib. Mat. Zh. 26, No.3(151), 72-77 (Russian) (1985; Zbl 0581.47034).


47F05 General theory of partial differential operators
47A10 Spectrum, resolvent


Zbl 0581.47034
Full Text: DOI


[1] M. G. Krein, ?On perturbation determinants and the trace formula,? Dokl. Akad. Nauk SSSR,144, No. 2, 268-273 (1962).
[2] M. G. Krein, ?On some new studies in perturbation theory,? First Summer Mathematical School, Kanev (1963), pp. 104-183.
[3] I. M. Lifshits, ?On a problem of perturbation theory,? Usp. Mat. Nauk,7, No. 1, 171-180 (1952). · Zbl 0046.21203
[4] V. S. Buslaev and L. D. Faddeev, ?On trace formulas for the differential singular Sturm-Liouville operator,? Dokl. Akad. Nauk SSSR,132, No. 1, 13-16 (1960). · Zbl 0129.06501
[5] V. A. Yavryan, ?On the spectral shift function for Sturm-Liouville operators,? Dokl. Akad. Nauk Arm. SSR,38, No. 3, 193-198 (1964). · Zbl 0198.18801
[6] M. Sh. Birman and M. G. Krein, ?On theory of wave operators and scattering operators,? Dokl. Akad. Nauk SSSR,144, No. 3, 475-480 (1962).
[7] L. S. Koplienko, ?On trace formula for disturbances of nonkernel type,? Sib. Mat. Zh.,25, No. 5, 62-71 (1984).
[8] I. C. Gohberg and M. G. Krein, Introduction to Theory of Linear Nonselfadjoint Operators, Amer. Math. Soc. (1969). · Zbl 0181.13504
[9] V. B. Matveev and M. M. Skriganov, ?Scattering problem for radial Schrödinger equation with slowly decreasing potential,? Teor. Mat. Fiz.,10, No. 2, 238-248 (1972). · Zbl 0254.47018
[10] E. C. Titchmarsh, Eigenfunction Expansions, Oxford Univ. Press (1962). · Zbl 0099.05201
[11] V. S. Buslaev and V. B. Matveev, ?Wave operators for Schrödinger equation with slowly decreasing potential,? Teor. Mat. Fiz.,2, No. 3, 367-376 (1970).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.