×

zbMATH — the first resource for mathematics

Completion functors for categories of convergence spaces. I: Acceptability functors. (English) Zbl 0623.54003
This article contains a general completion theory. A preprint form has appeared earlier and has been reviewed in Zbl 0526.54015 (1984).
Reviewer: H.Herrlich

MSC:
54B30 Categorical methods in general topology
54E15 Uniform structures and generalizations
54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
Citations:
Zbl 0526.54015
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Butzmann, Math. Nachr. 128 (1986)
[2] Cook, Math. Ann. 159 pp 94– (1965)
[3] Cook, Math. Ann. 173 pp 290– (1967)
[4] Frič, Math. Nachr. 99 pp 99– (1980)
[5] Gähler, Demonstratio Math. 6 pp 613– (1973)
[6] Gähler, Grundstrukturen der Analysis, Berlin, Basel (1977) · Zbl 0351.54001
[7] Gähler, Math. Nachr. 75 pp 185– (1976)
[8] Herrlich, Lecture Notes in Math. 78 (1968) · Zbl 0182.25302
[9] General Topology, Toronto–New York–London 1955 · Zbl 0066.16604
[10] A general completion theory, Preprint P-Math-07/83 (1983), Inst. f. Math., Akad. Wiss. DDR, 49 p.
[11] Completion for some concrete categories over the category of uniform limit spaces, Proc. Intern. School on Convergence Structures and Appl. II, Schwerin 1983, Abh. Akad. Wiss. DDR 2N (1984) 119–130
[12] Completion of sequential convergence groups, Proc. Conf. on Topology and Measure IV, Trassenheide 1983, Part I, Wiss. Beiträge Univ. Greifswald, 1984
[13] On subspaces of complete convergence space, to appear in Proc. Conf. on Convergence, Bechynê 1984
[14] Eine allgemeine Theorie der Vervollständigung und Čech-Stone-Kompaktifizierung. Dissertation B, Greifswald 1984
[15] Allgemeine Topologie, Berlin–Heidelberg–New York 1972 · Zbl 0242.54001
[16] Kategorielle Algebra, Berlin 1979 · Zbl 0446.08001
[17] Wyler, Math. Nachr. 46 pp 1– (1970)
[18] Filter space monads, regularity, completions, Carnegie-Mellon University Report 73–1 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.