Swanepoel, Jan W. H. A note on proving that the (modified) bootstrap works. (English) Zbl 0623.62041 Commun. Stat., Theory Methods 15, 3193-3203 (1986). Let \(X_ 1,...,X_ n\) be i.i.d. random variables (rv’s) and let \(X^*_ 1,...,X^*_ m\) be a bootstrap sample of i.i.d. rv’s with distribution function (df) \(F_ n\), where \(F_ n\) is the empirical df based on \(X_ 1,...,X_ n\). Specifying \(m=m(n)\) as some suitable function of n it is shown first that the bootstrap also works for the counter-examples given by P. J. Bickel and D. Freedman, Ann. Stat. 9, 1196-1217 (1981; Zbl 0449.62034). Secondly, based on a result of W. Stute, Ann. Probab. 10, 86-107 (1982; Zbl 0489.60038) on the oscillation behavior of empirical processes a method is suggested which can be used to show that the bootstrap method of distribution approximation is asymptotically valid. Reviewer: P.Gaenssler Cited in 2 ReviewsCited in 32 Documents MSC: 62G30 Order statistics; empirical distribution functions 62E20 Asymptotic distribution theory in statistics 62D05 Sampling theory, sample surveys 65C05 Monte Carlo methods 60F17 Functional limit theorems; invariance principles 62F25 Parametric tolerance and confidence regions Keywords:quantile process; empirical distribution; bootstrap; empirical processes; approximation PDF BibTeX XML Cite \textit{J. W. H. Swanepoel}, Commun. Stat., Theory Methods 15, 3193--3203 (1986; Zbl 0623.62041) Full Text: DOI References: [1] Bickel P.J., Proceedings Fifth Berkeley Syrup.Math.Statist. and Prob 1 pp 575– (1966) [2] DOI: 10.1214/aos/1176345637 · Zbl 0449.62034 · doi:10.1214/aos/1176345637 [3] DOI: 10.1214/aoms/1177728174 · Zbl 0073.14603 · doi:10.1214/aoms/1177728174 [4] DOI: 10.1214/aos/1176344552 · Zbl 0406.62024 · doi:10.1214/aos/1176344552 [5] Kiefer J., Nonparametric Techniques in Statistical Inference pp 299– (1970) [6] DOI: 10.1214/aoms/1177698309 · Zbl 0159.48004 · doi:10.1214/aoms/1177698309 [7] Robbins, H. and Siegmund, D. On the law of the lterated logarithm for maxima and minima. Proc.Sixth. Benkeley Symp. Math.Statist.Prob. Vol. 3, pp.51–70. Univ.of.California Press. [8] DOI: 10.1214/aop/1176993915 · Zbl 0489.60038 · doi:10.1214/aop/1176993915 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.