Han, Houde An analysis of penalty-nonconforming finite element method for Stokes equations. (English) Zbl 0623.76020 J. Comput. Math. 4, 164-172 (1986). The penalty-nonconforming finite element method for Stokes equations is considered. An abstract error estimate is given. For Crouzeix-Raviart nonconforming triangular elements [M. Crouzeix and P. A. Raviart, Revue Franç. Automat. Inform. Rech. Opérat. 7(1973), R-3, 33-76 (1974; Zbl 0302.65087)], in particular, the analysis shows that the reduced integration technique is not necessary in the integration of the penalty term on each element. It means that a loss of precision is avoided in this penalty method. Cited in 1 Document MSC: 76D07 Stokes and related (Oseen, etc.) flows 49S05 Variational principles of physics 35Q30 Navier-Stokes equations Keywords:Sobolev spaces; boundary value problem; variational problem; penalty- nonconforming finite element method; Stokes equations; error estimate; nonconforming triangular elements; reduced integration technique Citations:Zbl 0302.65087 PDF BibTeX XML Cite \textit{H. Han}, J. Comput. Math. 4, 164--172 (1986; Zbl 0623.76020) OpenURL