On simulation methods for the Boltzmann equation. (English) Zbl 0623.76084

We give a comparative discussion of some simulation procedures for the Boltzmann equation in terms of rigour and numerical effort. The methods under consideration are the algorithms suggested by G. A. Bird [Molecular gas dynamics, Clarendon Press (1976)] and K. Nanbu [J. Phys. Soc. Japan 49, 2042-2049 (1980)], respectively, and a modification of the Nanbu procedure suggested by H. Babovsky [Math. Methods Appl. Sci. 8, 223-233 (1986; Zbl 0609.76084)]. The procedures are applied to and compared by means of a shock wave problem.


76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82B40 Kinetic theory of gases in equilibrium statistical mechanics


Zbl 0609.76084
Full Text: DOI


[1] Alsmeyer H., J. Fluid Mech. 74 pp 497– (1976)
[2] Babovsky H., Math. Meth. Appl. Sci. 9 (1986)
[3] Belotserkovskiy O. M., Yanitzkiy, V.Ye.: Zhurn. Vych. Mat. i. Mat. Fiz. 15 pp 1195– (1975)
[4] Bird G. A., Phys. Fluids 6 pp 1518– (1963)
[5] Bird G. A., AIAA Journal 4 pp 55– (1966)
[6] Bird G. A., Phys. Fluids 13 pp 2676– (1970) · Zbl 0227.76111
[7] Bird G. A., Molecular Gas Dynamics, Clarendon Press (1976)
[8] Deshpande S. M., Report 18 FM 4, Dept. Aero Engng., Indian Inst. Science (1978)
[9] Nanbu K., J. Phys. Soc. Jpn. 49 pp 2042– (1980)
[10] Nanbu K., J. Phys. Soc. Jpn. 50 pp 3382– (1983)
[11] Nanbu K., Phys. Fluids 27 pp 2632– (1984)
[12] Papanicolaou G. C., Bull. Am. Math. Soc. 81 pp 330– (1975) · Zbl 0361.60056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.