zbMATH — the first resource for mathematics

Grade filtration of linear functional systems. (English) Zbl 1327.16037
Summary: The grade (purity) filtration of a finitely generated left module \(M\) over an Auslander regular ring \(D\) is a built-in classification of the elements of \(M\) in terms of their grades (or their (co)dimensions if \(D\) is also a Cohen-Macaulay ring). In this paper, we show how grade filtration can be explicitly characterized by means of elementary methods of homological algebra. Our approach avoids using sophisticated methods such as bidualizing complexes, spectral sequences, associated cohomology, or Spencer cohomology used in the literature of algebraic analysis. Efficient implementations dedicated to the computation of grade filtration can then be easily developed in the standard computer algebra systems. Moreover, this characterization of grade filtration is shown to induce a new presentation of the left \(D\)-module \(M\) which is defined by a block-triangular matrix formed by equidimensional diagonal blocks. The linear functional system associated with the left \(D\)-module \(M\) can then be integrated in cascade by successively solving inhomogeneous linear functional systems defined by equidimensional homogeneous linear systems of increasing dimension. This equivalent linear system generally simplifies the computation of closed-form solutions of the original linear system. In particular, many classes of underdetermined/overdetermined linear systems of partial differential equations can be explicitly integrated by the Maple package PurityFiltration and the GAP package homalg, but not by the standard PDE solvers of computer algebra systems such as Maple.

16W70 Filtered associative rings; filtrational and graded techniques
16S32 Rings of differential operators (associative algebraic aspects)
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
32C38 Sheaves of differential operators and their modules, \(D\)-modules
16Z05 Computational aspects of associative rings (general theory)
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
Full Text: DOI
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society, vol. 94. AMS, Providence (1969) · Zbl 0204.36402
[2] Barakat, M.: Spectral filtrations via generalized morphisms. Technical report (2009). 0904.0240, submitted for publication · Zbl 0558.17011
[3] Barakat, M., Purity filtration and the fine structure of autonomy, Budapest (Hungary) · Zbl 1253.16006
[4] Barakat, M., Bremer, B.: Higher extension modules and the Yoneda product. Technical report (2008). 0802.3179, submitted for publication
[5] Barakat, M., Lange-Hegermann, M.: The Sheaves package—a homalg based package for the Abelian category of coherent sheaves over a projective scheme (2008-2011). http://homalg.math.rwth-aachen.de/index.php/unreleased/sheaves
[6] Barakat, M.; Lange-Hegermann, M., An axiomatic setup for algorithmic homological algebra and an alternative approach to localization, J. Algebra Appl., 10, 269-293, (2011) · Zbl 1227.18009
[7] Barakat, M., Quadrat, A.: The Abeliansystems project (2011). A homalg package (GAP 4), in development. http://homalg.math.rwth-aachen.de/ · Zbl 0963.93015
[8] Barakat, M.; Robertz, D., Homalg—a meta-package for homological algebra, J. Algebra Appl., 7, 299-317, (2008) · Zbl 1151.13306
[9] Björk, J.E.: Rings of Differential Operators. North Holland, Amsterdam (1979)
[10] Björk, J.E.: Analytic \({\mathcal{D}}\)-Modules and Applications. Kluwer, Dordrecht (1993)
[11] Borel, A.: Algebraic \(D\)-Modules. Perspectives in Mathematics, vol. 2. Academic Press, San Diego (1987) · Zbl 0642.32001
[12] Buchberger, B., An algorithm for finding the basis elements in the residue class ring modulo a zero dimensional polynomial ideal, J. Symb. Comput., 41, 475-511, (2006) · Zbl 1158.01307
[13] Cartan, E., Einstein, A.: Lettres sur le parallélisme absolu. Académie Royale de Belgique, Princeton University Press, Princeton (1979) · Zbl 0592.01014
[14] Chyzak, F.; Quadrat, A.; Robertz, D., Effective algorithms for parametrizing linear control systems over ore algebras, Appl. Algebra Eng. Commun. Comput., 16, 319-376, (2005) · Zbl 1109.93018
[15] Chyzak, F.; Quadrat, A.; Robertz, D.; Chiasson, J. (ed.); Loiseau, J.-J. (ed.), Oremodules: a symbolic package for the study of multidimensional linear systems, No. 352, 233-264, (2007), Berlin · Zbl 1248.93006
[16] Cluzeau, T.; Quadrat, A., Factoring and decomposing a class of linear functional systems, Linear Algebra Appl., 428, 324-381, (2008) · Zbl 1131.15011
[17] Cluzeau, T.; Quadrat, A., A constructive version of fitting’s theorem on isomorphisms and equivalences of linear systems, Poitiers (France)
[18] Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley Classics Library. Wiley, New York (1989) · Zbl 0729.35001
[19] Eisenbud, D.; Huneke, C.; Vasconcelos, W., Direct methods for primary decomposition, Invent. Math., 110, 207-235, (1992) · Zbl 0770.13018
[20] Fabiańska, A.; Quadrat, A.; Park, H. (ed.); Regensburger, G. (ed.), Applications of the Quillen-Suslin theorem to multidimensional systems theory, No. 3, 23-106, (2007), Berlin · Zbl 1197.13011
[21] The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.4.12 (2008). http://www.gap-system.org
[22] Ginsburg, V., Characteristic varieties and vanishing cycles, Invent. Math., 84, 327-402, (1986) · Zbl 0598.32013
[23] Gromov, M.: Differential Partial Relations. Springer, Berlin (1986) · Zbl 0651.53001
[24] Hartshorne, R.: Residue and Duality. Lectures Notes in Math., vol. 20. Springer, Berlin (1966) · Zbl 0212.26101
[25] Janet, M.: Sur les systèmes aux dérivées partielles comprenant autant d’équations que de fonctions inconnues. C. R. Acad. Sci. Paris 172, 1637-1639 (1921) · JFM 48.0541.01
[26] Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Cahiers Scientifiques IV. Gauthier-Villars, Paris (1929) · JFM 55.0276.01
[27] Johnson, J., Systems of \(n\) partial differential equations in \(n\) unknown functions: the conjecture of M. janet, Trans. Am. Math. Soc., 242, 329-334, (1978) · Zbl 0405.12022
[28] Kashiwara, M., \(B\)-functions and holonomic systems, Invent. Math., 38, 33-53, (1976) · Zbl 0354.35082
[29] Kashiwara, M.: Algebraic Study of Systems of Partial Differential Equations. Mémoires of Société Mathématique de France, vol. 63. SMF, Paris (1995). Master Thesis, Tokyo Univ. 1970 (English translation)
[30] Levandovskyy, V.: Non-commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation. PhD thesis, University of Kaiserslautern (2005) · Zbl 1197.13011
[31] Levasseur, T., Complexe bidualisant en algèbre non commutative, No. 1146, 270-287, (1985), Berlin
[32] Maisonobe, P.; Sabbah, C., \(\mathcal{D}\)-modules cohérents et holonomes, No. 45, (1993), Paris
[33] Malgrange, B., Systèmes différentiels à coefficients constants, 1-11, (1962)
[34] McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. AMS, Providence (2000) · Zbl 0644.16008
[35] Oberst, U., Multidimensional constant linear systems, Acta Appl. Math., 20, 1-175, (1990) · Zbl 0715.93014
[36] Oberst, U., The significance of gabriel localization for stability and stabilization of multidimensional input/output behaviors, Budapest (Hungary)
[37] Pommaret, J.-F.: Partial Differential Control Theory. Kluwer, Dordrecht (2001)
[38] Pommaret, J.-F., Macaulay inverse systems revisited, J. Symb. Comput., 46, 1049-1069, (2011) · Zbl 1233.35069
[39] Pommaret, J.-F.; Quadrat, A., Algebraic analysis of linear multidimensional control systems, IMA J. Math. Control Inf., 16, 275-297, (1999) · Zbl 1158.93319
[40] Quadrat, A., Extended Bézout identities, Porto (Portugal)
[41] Quadrat, A., Purity filtration of 2-dimensional linear systems, Budapest (Hungary) · Zbl 1231.16036
[42] Quadrat, A., Equidimensional triangularization of multidimensional linear systems, Poitiers (France)
[43] Quadrat, A.: Grade filtration of linear functional systems. Technical report, INRIA report 7769 (2011). http://hal.inria.fr/inria-00632281/fr/ · Zbl 1327.16037
[44] Quadrat, A., Purity filtration of multidimensional linear systems, Poitiers (France)
[45] Quadrat, A.: In: The Purity Filtration Project (2011). http://pages.saclay.inria.fr/alban.quadrat/PurityFiltration.html
[46] Quadrat, A., Robertz, D.: On the Baer extension problem for multidimensional linear systems. Technical report, INRIA report 6307 (2007). http://hal.inria.fr/inria-00175272 · Zbl 1137.16002
[47] Quadrat, A.; Robertz, D., Baer’s extension problem for multidimensional linear systems, Virginia (USA)
[48] Robertz, D.; Rosenkranz, M. (ed.); Wang, D. (ed.), Janet bases and applications, No. 2, 139-168, (2007), Berlin · Zbl 1130.13019
[49] Roos, J.-E.: Bidualité et structures des foncteurs dérivés de lim_{←} dans la catégorie des modules sur un anneau régulier. C. R. Acad. Sci. Paris 254, 1556-1558 (1962) · Zbl 0105.01303
[50] Rotman, J.J.: An Introduction to Homological Algebra, 2nd edn. Springer, Berlin (2009) · Zbl 1157.18001
[51] Schilli, C.: purityfiltration.lib. a Singular 3-1-3 Library for Computing the Purity Filtration of Modules over (Non-)commutative Algebras (2012). http://www.singular.uni-kl.de
[52] Spencer, D.C., Overdetermined systems of linear partial differential equations, Bull. Am. Math. Soc., 75, 179-239, (1969) · Zbl 0185.33801
[53] Stafford, J.T., Non-holonomic modules over Weyl algebras and enveloping algebras, Invent. Math., 79, 619-638, (1984) · Zbl 0558.17011
[54] Wood, J., Modules and behaviours in \(n\)D systems theory, Multidimens. Syst. Signal Process., 11, 11-48, (2000) · Zbl 0963.93015
[55] Zerz, E.; Lomadze, V., A constructive solution to interconnection and decomposition problems with multidimensional behaviors, SIAM J. Control Optim., 40, 1072-1086, (2001) · Zbl 1030.93012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.